Inhibitory Phlorotannins from the Edible Brown Alga Ecklonia stolonifera on Total Reactive Oxygen Species (ROS) Generation

  • Kang, Hye-Sook (Faculty of Food Science and Biotechnology, Pukyong National University) ;
  • Chung, Hae-Young (College of Pharmacy, Pusan National University) ;
  • Kim, Ji-Young (College of Pharmacy, Pusan National University) ;
  • Son, Byeng-Wha (Department of Chemistry, Pukyong National University) ;
  • Jung, Hyun-Ah (Korea Maritime University) ;
  • Choi, Jae-Sue (Faculty of Food Science and Biotechnology, Pukyong National University)
  • Published : 2004.02.01

Abstract

Reactive oxygen species (ROS) play an important role in the pathogenesis of many human degenerative diseases such as cancer, aging, arteriosclerosis, and rheumatism. Much attention has been focused on the development of safe and effective antioxidants. To discover sources of antioxidative activity in marine algae, extracts from 17 kinds of seaweed were screened for their inhibitory effect on total ROS generation in kidney homogenate using 2',7'-dichlorofluorescein diacetate (DCFH-DA). ROS inhibition was seen in three species: UIva pertusa, Symphyocladia latiuscula, and Ecklonia stolonifera. At a final concentration of 25 $\mu\textrm{g}$/mL, U. pertusa inhibited 85.65$\pm$20.28% of total ROS generation, S. latiscula caused 50.63$\pm$0.09% inhibitory, and the Ecklonia species was 44.30$\pm$7.33% inhibition. E. stolonifera OKAMURA (Lam-inariaceae), which belongs to the brown algae, has been further investigated because it is commonly used as a foodstuff in Korea. Five compounds, phloroglucinol (1), eckstolonol (2), eckol (3), phlorofucofuroeckol A (4), and dieckol (5), isolated from the ethyl acetate soluble fraction of the methanolic extrclct of E. stolonifera inhibited total ROS generation.

Keywords

References

  1. Altena, A. and Steinberg, P. D., Are differences in the responses between North American and Australasian marine herbivores to phlorotannins due to differences in phlorotannin structure? Biochem. Syst. Ecol., 20, 493-499 (1992) https://doi.org/10.1016/0305-1978(92)90003-V
  2. Aruorna, O. I., Antioxidant actions of plant foods: use of oxidative DNA damage as a tool for studying antioxidant efficacy. Free Radical Res., 30, 419-427 (1999) https://doi.org/10.1080/10715769900300461
  3. Beckman, J. S., Beckman, T. W., Chen, J., Marshell, P. A., and Freeman, B. A., Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc. Natl. Acad. Sci. USA, 87, 1620-1624 (1990) https://doi.org/10.1073/pnas.87.4.1620
  4. Beckman, J. S. and Koppenol. W. H., Nitric oxide, superoxide and peroxynitrite: the good, the bad and ugly. Am. J. Physiol., 271, C1424-C1437 (1996)
  5. Boettcher, A. A. and Targett, N. M., Role of polyphenolic mole-cular size in reduction of assimilation efficiency in Xiphister mucosus. Ecology, 74, 891-903 (1993) https://doi.org/10.2307/1940814
  6. Branen, A. L., Toxicology and biochemistry of butylated hydroxyanisole and butylated hydroxytoluene. J. Am. Oil Chem. Soc., 52, 59-63 (1975) https://doi.org/10.1007/BF02901825
  7. Choi, J. S., Lee. J. H., Park, H. J., Kim, H. G.. Young. H. S., and Mun, S. I., Screening for antioxidant activity of plant and marine algae and its active principles from Prunus davidiana. Kor. J. Pharmacogn., 24, 299-303 (1993)
  8. Chung, H. Y., Kim, H. J., Jung, K. J., Yoon, J. S., Yoo, M. A., Kim, K. W., and Yu, B. P.,The inflammatory process in aging. Rev. Clin. Gerontol., 10, 207-222 (2000) https://doi.org/10.1017/S0959259800010327
  9. Freeman. B. A., Biological sites and mechanism of free radical production, In: Armstrong D, Sohal R, Culter RG, Slater T. (eds), Free radicals in molecular biology, aging, and disease, Raven Press, New York, pp. 43-52 (1984)
  10. Fukuyama, Y, Miura, I., Kinzyo. Z., Mori, H., Kido, M.. Nakayama, Y, Takahashi, M.. and Ochi, M.. Eckols, novel phlorotannins with a dibenzo-p-dioxin skeleton possessing inhibitory effects on ${\alpha}_{2}$-macroglobulin from the brown alga Ecklonia kurome OKAMURA. Chem. Lett.. 739-742 (1985)
  11. Fukuyarna, Y., Kodama, M., Miura, I., Kinzyo, Z., Kido, M., Mori, H.. Nakayama, Y, and Takahashi, M., Structure of an anti-plasmin inhibitor, eckol, isolated from the brown alga Ecklonia kurome OKAMURA and inhibitory activities of its derivatives on plasma plasmin inhibitors. Chem. Pharm. Bull., 37, 349-353 (1989a) https://doi.org/10.1248/cpb.37.349
  12. Fukuyama, Y., Kodama. M., Miura, I., Kinzyo, Z., Mori, H., Nakayama, Y., and Takahashi, M., Anti-plasmin inhibitor. V. Structures of novel dimeric eckols isolated from the brown alga Ecklonia kurome OKAMURA. Chem. Pharm. Bull., 37, 2438-2440 (1989b) https://doi.org/10.1248/cpb.37.2438
  13. Fukuyama, Y., Kodama. M., Miura, I., Kinzyo, Z., Mori, H., Nakayama, Y., and Takahashi, M., Anti-plasmin inhibitor. VI. Structure of phlorofucofuroeckol A, a novel phlorotannin with both dibenzo-1,4-dioxin and dibenzofuran elements, from Ecklonia kurome OKAMURA. Chem. Pharm. Bull., 38, 133-135 (1990) https://doi.org/10.1248/cpb.38.133
  14. Han, E. S., Kim. J. W, Eom, M. O., Kang, I. H., Kang, H. J., Choi, J. S., Ha, K. W., and Oh, H. Y., Inhibitory effects of Ecklonia stolonifera on gene mutation on mouse lymphoma $tk^{+/-}$ locus in L5178Y-3.7.2C cell and bone marrow micronuclei formation in ddY mice. Environ. Mutagen. Carcinogen., 20, 104-111 (2000)
  15. Hay. M. E., Marine plant-herbivore interactions: the ecology of chemical defense. Ann. Rev. Ecol. Syst., 19, 111-145 (1988) https://doi.org/10.1146/annurev.es.19.110188.000551
  16. Hermann, M., Kapiotis, S., Hofbauer. R., Exner, M., Seelos, C., Held, I., and Gmeiner, B., Salicylate inhibits LDL oxidation initiated by superoxide/nitric oxide radicals. FEBS Lett., 445, 212-214 (1999) https://doi.org/10.1016/S0014-5793(99)00043-5
  17. Kang, H. S., Chung, H. Y., Jung, J. H., Son, B. W., and Choi, J. S., A new phlorotannin from the brown alga Ecklonia stolonifera. Chem. Pharm. Bull., 51, 1012-1014 (2003) https://doi.org/10.1248/cpb.51.1012
  18. Kang. K., Park, Y., Hwang, H. J., Kim, S. H., Lee, J. G., and Shin, H. C., Antioxidative properties of brown algae poly-phenolics and their perspectives as chemopreventive agent against vascular risk factors. Arch. Pharm. Res., 26, 286-293 (2003) https://doi.org/10.1007/BF02976957
  19. Kurata, K., Taniguchi, K., Shiraishi, K., Hayama, N., Tanaka, I., and Suzuki, M., Ecklonialactone-A and -B, two unusual metabolites from the brown alga Ecklonia stolonifera Okamura. Chem. Lett., 267-270 (1989)
  20. Kurata, K., Taniguchi, K., Shiraishi, K., and Suzuki, M., Ecklonialactones C-F from the brown alga Ecklonia stolonifera. Phytochemistry, 33, 155-159 (1993) https://doi.org/10.1016/0031-9422(93)85413-L
  21. LeBel, C. P. and Bondy, S. C., Sensitive and rapid quantitation of oxygen reactive species formation in rat synaptosomes. Neurochem. lnt., 17, 435-440 (1990) https://doi.org/10.1016/0197-0186(90)90025-O
  22. Lee, J. H., Park, J. C., and Choi, J. S., The antioxidant activity of Ecklonia stolonifera. Arch. Pharm. Res., 19, 223-227 (1996a) https://doi.org/10.1007/BF02976894
  23. Lee, J. H., Oh, H. Y., and Choi, J. S., Preventive effect of Ecklonia stolonifera on the frequency of benzo(a)pyrene-induced chromosomal aberrations. J. Food Sci. Nutr., 1, 64-68 (1996b)
  24. Lee, J. H., Kim, N. D., Choi, J. S., Kim, Y. J., Moon, Y. H., Lim, S. Y., and Park, K. Y., Inhibitory effects of the methanolic extract of an edible brown alga, Ecklonia stolonifera and its component, phloroglucinol on aflatoxin $B_{1}$ mutagenicity in vitro (Ames test) and on benzo(a)pyrene or N-methyl N-nitrosourea c1astogenicity in vivo (mouse micronucleus test). Nat. Prod. Sci., 4, 105-114 (1998)
  25. Nagayama, K., Iwamura, Y., Shibata, T., Hirayama, I., and Nakamura, T., Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J. Antimicro. Chemother., 50, 889-893 (2002) https://doi.org/10.1093/jac/dkf222
  26. Nagayama, K., Shibata,T., Fujimoto, K., Honjo, T., and Nakamura, T., Algicidal effect of phlorotannins from the brown alga Ecklonia kurome on red tide microalgae. Aquaculture, 218, 601-611 (2003) https://doi.org/10.1016/S0044-8486(02)00255-7
  27. Nakamura, T., Nagayama, K., Uchida, K., and Tanaka, R., Antioxidant activity of phlorotannins isolated from the brown alga Eisenia bicyclis. Fish. Sci., 62, 923-926 (1996)
  28. Nakayama, Y., Takahashi, M., Fukuyama, Y., and Kinzyo, Z., An anti-plasmin inhibitor, eckol, isolated from the brown alga Ecklonia kurome OKAMURA. Agric. Biol. Chem., 63, 3025-3030 (1989)
  29. Park, D. C., Ji, C. I., Kim, S. H., Jung, K. J., Lee, T. G., Kim, I. S., Park, Y. H., and Kim, S. B., Characteristics of tyrosinase inhibitory extract from Ecklonia stolonifera. J. Fish. Sci. Tech., 3, 195-199 (2000)
  30. Pincemail, J. J., Free radicals and antioxidants in human diseases. In Favier AE, Cadet J, Kalyanaraman B, Fontecave M, Pierre JL. (eds) Analysis of Free radicals in Biological Systems. Birkhauser Verlag, Berlin, pp.83-98 (1995)
  31. Podrez, E. A., Schmitt, D., Hoff, H. F., and Hazen, S. L., Myeloperoxidase-generated reactive nitrogen species con-vert LDL into an atherogenic form in vitro. J. Clin. Invest., 103,1547-1560 (1999) https://doi.org/10.1172/JCI5549
  32. Singh, A., Physicochemical and physiological aspects, In: Miquel J, Quintanilha AT, Weber H. (eds), CRC handbook of free radicals and antioxidants in biomedicine Vol. I, CRC press lnc., Boca Raton, Florida, pp.17-25 (1989)
  33. Squadrito, G. L. and Pryor, W. A., Oxidative chemistry of nitric oxide: the roles of superoxide, peroxynitrite, and carbon dioxide. Free Radic. Biol. Med., 25, 392-403 (1998) https://doi.org/10.1016/S0891-5849(98)00095-1
  34. Swanson, A. K. and Druehl, L. D., Induction, exudation and the UV protective role of kelp phlorotannins. Aquatic Botany, 73, 241-253 (2002) https://doi.org/10.1016/S0304-3770(02)00035-9
  35. Taniguchi, K., Kurata, K., and Suzuki, M., Feeding-deterrent effect of phlorotannins from the brown alga Ecklonia stolonifera against the abalone Haliotis discus Hannai,. Nippon Suisan Gakkaishi, 57, 2065-2071 (1991) https://doi.org/10.2331/suisan.57.2065
  36. Targett, N. M., Boettcher, A. A., Targett, T. E., and Vrolijk, N. H., Tropical marine herbivore assimilation of phenolic-rich plants. Oecologia, 103, 170-179 (1995) https://doi.org/10.1007/BF00329077