Dynamic Response of an Anti-plane Shear Crack in a Functionally Graded Piezoelectric Strip

  • Kwon, Soon-Man (Department of Mechanical Design & Manufacturing, Changwon National University) ;
  • Lee, Kang-Yong (Department of Mechanical engineering, Yonsei University)
  • Published : 2004.03.01

Abstract

The dynamic response of a cracked functionally graded piezoelectric material (FGPM) under transient anti-plane shear mechanical and in-plane electrical loads is investigated in the present paper. It is assumed that the electroelastic material properties of the FGPM vary smoothly in the form of an exponential function along the thickness of the strip. The analysis is conducted on the basis of the unified (or natural) crack boundary condition which is related to the ellipsoidal crack parameters. By using the Laplace and Fourier transforms, the problem is reduced to the solutions of Fredholm integral equations of the second kind. Numerical results for the stress intensity factor and crack sliding displacement are presented to show the influences of the elliptic crack parameters, the electric field, FGPM gradation, crack length, and electromechanical coupling coefficient.

Keywords

References

  1. Bleustein, J. L., 1968, 'A New Surface Wave in Piezoelectric Materials,' Applied Physics Letters, Vol. 13, pp. 412-413 https://doi.org/10.1063/1.1652495
  2. Chen, J., Lin, Z. X. and Zou, Z. Z., 2003a, 'Electromechanical Impact of a Crack in a Functionally Graded Piezoelectric Medium,' Theoretical and Applied Fracture Mechanics, Vol. 39, pp. 47-60 https://doi.org/10.1016/S0167-8442(02)00137-4
  3. Chen, J., Lin, Z. X. and Zou, Z. Z., 2003b, 'Dynamic Response of a Crack in a Functionally Graded Interface of Two Dissimilar Piezoelectric Half-planes,' Archive of Applied Mechanics, Vol. 72, pp. 686-696 https://doi.org/10.1007/s00419-002-0238-5
  4. Chen, Z. T. and Worswick, M. J., 2002, 'Dynamic Fracture Behavior of a Cracked Piezoelectric Half Space under Anti-plane Mechanical and In-plane Electrical Impact,' Archive of Applied Mechanics, Vol. 72, pp. 1-12 https://doi.org/10.1007/s004190000123
  5. Copson, E. T., 1961, 'On Certain Dual Integral Equations,' Proceedings of the Glasgow Mathematical Association, Vol. 5, pp. 19-24
  6. Jin, Z. -H. and Batra, R. C., 1996, 'Some Basic Fracture Mechanics Concepts in Functionally Graded Materials,' Journal of the Mechanics and Physics of Solids, Vol. 44, pp. 1221-1235 https://doi.org/10.1016/0022-5096(96)00041-5
  7. Jin, B. and Zhong, Z., 2002, 'A Moving Mode III Crack in Functionally Graded Piezoelectric Material : Permeable Problem,' Mechanics Research Communications, Vol. 29, pp. 217-224 https://doi.org/10.1016/S0093-6413(02)00259-8
  8. Kwon, S. M., Son, M. S. and Lee, K. Y., 2002, 'Transient Behavior in a Cracked Piezoelectric Layered Composite : Anti-plane Problem,' Mechanics of Materials, Vol. 34, pp. 593-603 https://doi.org/10.1016/S0167-6636(02)00152-7
  9. Li, C. and Weng, G. J., 2002, 'Antiplane Crack Problem in Functionally Graded Piezoelectric Materials,' Journal of Applied Mechanics, Transactions of ASME, Vol. 69, pp. 481-488 https://doi.org/10.1115/1.1467091
  10. Miller, M. K. and Guy, W. T., 1966, 'Numerical Inversion of the Laplace Transform by Use of Jacobi Polynomials,' SIAM Journal on Numerical Analysis, Vol. 3, pp. 624-635 https://doi.org/10.1137/0703055
  11. Shin, J. W. and Kim, T. -U., 2003, 'Functionally Graded Piezoelectric Strip with Eccentric Crack under Anti-plane shear,' KSME International Journal, Vol. 17, pp. 854-859 https://doi.org/10.1007/BF02983399
  12. Shin, J. W., Kwon, S. M. and Lee, K. Y., 2001a, 'Eccentric Crack in a Piezoelectric Strip under Electro-Mechanical Loading,' KSME International Journal, Vol. 15, pp. 21-25 https://doi.org/10.1007/BF03184794
  13. Shin, J. W., Kwon, S. M. and Lee, K. Y., 2001b, 'An Eccentric Crack in a Piezoelectric Strip under Anti-plane Shear Impact Loading,' International Journal of Solids and Structures, Vol. 38, pp. 1483-1494 https://doi.org/10.1016/S0020-7683(00)00097-4
  14. Sneddon, I. N., 1972, The Use of Integral Transforms, McGraw-Hill Book Company
  15. Wang, B. L., 2003, 'A Mode III Crack in Functionally Graded Piezoelectric Materials,' Mechanics Research Communications, Vol. 30, pp. 151-159 https://doi.org/10.1016/S0093-6413(02)00366-X
  16. Wang, B. L. and Mai, Y. -W., 2003, 'On the Electrical Boundary Conditions on the Crack Surfaces in Piezoelectric Ceramics,' International Journal of Engineering Science, Vol. 41, pp. 633-652 https://doi.org/10.1016/S0020-7225(02)00149-0
  17. Xu, X. L. and Rajapakse, R. K. N. D., 2001, 'On a Plane Crack in Piezoelectric Solids,' International Journal of Solids and Structures, Vol. 38, pp. 7643-7658 https://doi.org/10.1016/S0020-7683(01)00029-4
  18. Zhang, T. -Y. and Tong, P., 1996, 'Fracture Mechanics for Mode III Crack in a Piezoelectric Material,' International Journal of Solids and Structures, Vol. 33, pp. 343-359 https://doi.org/10.1016/0020-7683(95)00046-D