CRUSH BEHAVIOR OF METALLIC FOAMS FOR PASSENGER CAR DESIGN

  • Cheon, S.S. (Division of Mechanical Engineering, Kongju National University) ;
  • Meguid, S.A. (Engineering Mechanics and Design Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto)
  • Published : 2004.03.01

Abstract

In this paper, a modified and representative unit cell model was employed to study the crush behaviour of a closed cell metallic foam. The unit cell which captures the main geometrical features of the metallic foam considered was used to simulate crush behaviour in metallic foams. Both analytical using limit analysis and numerical using the finite element method were used to study the collapse behaviour of the cell. The analytical crushing stress of the foam was compared with FE results and was found to be in good agreement.

Keywords

References

  1. Abramowicz, W. (1994). Cmsh resistance of T, Y, and Xsections. Technicat Report 24, Department of Ocean Engineering, MIT, Cambridge, MA-02139, U.S.A
  2. Bastawros, A-R, Bart-smith, H. and Evans, A. G. (2000). Expehmental analysis of deformation mechanisms in a closed-cell aluminium alloy foam. J. the Mechanics and Physics of SoIids, 48, 301-322 https://doi.org/10.1016/S0022-5096(99)00035-6
  3. Baumeister, J., Banhart, J. and Weber, M. (1997). Aluminium foams for transport industry. Materiats & Design, 18, 217-220 https://doi.org/10.1016/S0261-3069(97)00050-2
  4. Deshpande, V. S. and Fleck, N. A. (2000). High strain rate compressive behaviour of aluminium alloy foams. Int. J. Impact Eneineerins, 24, 277-298 https://doi.org/10.1016/S0734-743X(99)00153-0
  5. Ford, C. M. and Gibson, L. J. (1998). uniaxial strength asymmetry in cellular materials: An analytical model.Int. J. Mechanicat Science, 40, 521-31 https://doi.org/10.1016/S0020-7403(97)00064-7
  6. Fortes, M. A., Colaco, R. and Vaz, M. F. (1999). The contact mechanics of cellular solids. Wear, 99, 2301-2310
  7. Gibson, L. J. and Ashby, M. F. (1998). Cettutar Sotids. Pergamon Press. Oxford, England
  8. Grenestedt, J. L. (1998). Influence of wavy imper-fections in cell walls on elastic stiffness of cellular solids. J. the Mechanics and Physics of Solids, 45, 29-50
  9. Gutierrez, M. A. and Borst, R. D. (2000). Stochastic aspects of localized failure: material and boundary imperfections, Int. J. SoIids and Structures, 37, 7145-7159. https://doi.org/10.1016/S0020-7683(00)00193-1
  10. Hanssen, A. G., Langseth, M. and Hopperstad, O. S.(1996). Static cmshing of square aluminium extrusions with aluminium foam filler, Int. J. Impact Ensineering, 18, 949-968 https://doi.org/10.1016/S0734-743X(96)00025-5
  11. Hanssen, A. G., Langseth, M. and Hopperstad, O. S.(2000). Static and dynamic crushing of square aluminium extrusions with aluminium foam filler, Int. J. Impact Ensineerine, 24, 347-383 https://doi.org/10.1016/S0734-743X(99)00169-4
  12. Harte, A. M., Fleck, N. A. and Ashby, M. F. (1999). Fatigue failure of an open cell and a closed cell aluminium alloy foam. Acta Materiatia, 47, 2511-2524 https://doi.org/10.1016/S1359-6454(99)00097-X
  13. Huck$\check{c}$Ko, B. and Faria, L. (1997). Material model of metallic cellular solids, Computers & Structures, 62, 1049-1057 https://doi.org/10.1016/S0045-7949(96)00310-0
  14. Huh. H. and Kang, W. J. (2002). Crash-worthiness assessment of thin-walled structures with the high-strength steel sheet, Int. J. VehicIe Design, 30, 1-21 https://doi.org/10.1504/IJVD.2002.002022
  15. Lee, D. G. and Cheon, S. S. (2001). Impact Characteri-sties of glass fiber composites with respect to fiber volume fraction. J. of Composite Materiats, 35,27-56 https://doi.org/10.1177/002199801772661858
  16. Meguid, S. A., Cheon, S. S. and Abbasi, N-El (2002). FE modelling of deformation localization in metallic foams. Finite Etements in Anatysis and Desien, 38, 631-643 https://doi.org/10.1016/S0168-874X(01)00096-8
  17. Meguid, S. A. and Xue, H. (2000). On the use of 'SDDIS' for measuring deformation localization in cellular materials, Proceedings of the third Inter-national Conference on Mechanics and Materiats in Desien. Orlando, U.S.A. 187
  18. Mierlo, J. V., Vereecken, L., Maggetto, G., Favrel, V., Meyer, S. and Hecq, W. (2003). How to define clean vehicles? Environmental impact rating of vehicles, Int. J. Automotive Technotogy, 4, 2, 77-86
  19. Miller, R. E. (2000). A continuum plasticity model forthe constitutive and indentation behaviour of foamed metals, Int. J. Mechanicat Science, 42, 729-754 https://doi.org/10.1016/S0020-7403(99)00021-1
  20. Overaker, D. W., Cuitino, A. M, and Langrana, N. A.(1998). Effects of morphology and orientation on the behavior of two-dimensional hexagonal foams and application in a re-entrant foam anchor model. Mechanics of MateriaIs, 29, 43-52 https://doi.org/10.1016/S0167-6636(98)00004-0
  21. Paul, A., Seshacharyulu, T. and Ramanurty, U. (1999). Tensile strength of a closed-cell al foam in the presence of notches and holes. Scripta Materiatia, 40, 809-814 https://doi.org/10.1016/S1359-6462(99)00037-8
  22. Santosa, S. and Wierzbicki, T. (1998). Crash behavior of columns filled with aluminum honeycomb or foam.Computers and Structures, 68, 343-367 https://doi.org/10.1016/S0045-7949(98)00067-4
  23. Santosa, S. and Wierzbicki, T. (1998). On the modeling of cmsh behavior of a closed-cell aluminium foam structures. J. the Mechanics and Physics of Solids, 46, 645-669 https://doi.org/10.1016/S0022-5096(97)00082-3
  24. Schey, J. A. (1987) Introduction to Manufacturing Processes. McGraw-Hill. New York
  25. Spiegel, M. R. (1968). Mathematicat Handbook of Formutas and Tabtes. McGraw-Hill. New York.
  26. Sugimura, Y., Meyer, J., He, M. Y, Bart-smith, H.,Grenestedt, J. L. and Evans A G. (1997). On the mechanical performance of closed cell al alloy foams. Acta MateriaIia, 45, 5245-5259. https://doi.org/10.1016/S1359-6454(97)00148-1