DOI QR코드

DOI QR Code

The Influence of Temperature on Low Cycle Fatigue Behavior of Prior Cold Worked 316L Stainless Steel (I) - Monotonic and Cyclic Behavior -

냉간 가공된 316L 스테인리스강의 저주기 피로 거동에 미치는 온도의 영향 (I) - 인장 및 반복 거동 -

  • 홍성구 (한국과학기술원 기계공학과) ;
  • 윤삼손 (한국과학기술원 기계공학과) ;
  • 이순복 (한국과학기술원 기계공학과)
  • Published : 2004.04.01

Abstract

Tensile and low cycle fatigue (LCF) tests on prior cold worked 316L stainless steel were carried out at various temperatures from room temperature to 650$^{\circ}C$. At all test temperatures, cold worked material showed the tendency of higher strength and lower ductility compared with those of solution treated material. The embrittlement of material occurred in the temperature region from 300$^{\circ}C$ to 600$^{\circ}C$ due to dynamic strain aging. Following initial cyclic hardening for a few cycles, cycling softening was observed to dominate until failure occurred during LCF deformation, and the cyclic softening behavior strongly depended on temperature and strain amplitude. Non-Masing behavior was observed at all test temperatures and hysteresis energy curve method was employed to describe the stress-strain hysteresis loops at half$.$life. The prediction shows a good agreement with the experimental results.

Keywords

References

  1. Valsan, M., Sastry, D. H., Bhanu Sankara Rao K. and Mannan, S. L., 1995, 'Effect of Strain Rate on the High-Temperature Low-Cycle Fatigue Properties of a Nimonic PE-16 Superalloy', Metall. Trans., Vol. 25A, pp. 159-171 https://doi.org/10.1007/BF02646684
  2. Srinivasan, V. S., Sandhya, R., Valsan, M., Bhanu Sankara Rao K., Mannan, S. L., 1997, 'The influence of Dynamic Strain Ageing on Stress Response and Strain-Life Relationship in Low Cycle Fatigue of 316L(N) Stainless Steel', Scripta Materialia, Vol. 37, No. 10, pp. 1593-1598 https://doi.org/10.1016/S1359-6462(97)00282-0
  3. Srinivasan, V. S.,Valsan, M., Sandhya, R., Bhanu Sankara Rao K., Mannan, S. L., Sastry, D. H., 1999, 'High Temperature Time-Dependent Low Cycle Fatigue Behavior of a Type 316L(N) Stainless Steel', Int. J. Fatigue, Vol. 21, pp. 11-21 https://doi.org/10.1016/S0142-1123(98)00052-8
  4. Hong, S. G., Lee, S. B., 2002, 'Development of a New LCF Life Prediction Model of 316L Stainless Steel at Elevated Temperature', KSME Trans. A, Vol. 26, No. 3, pp. 521-527 https://doi.org/10.3795/KSME-A.2002.26.3.521
  5. Kandil, F. A., 1999, 'Potential Ambiguity in the Determination of the Plastic Strain Range Component in LCF Testing', Int. J. Fatigue, Vol. 21. pp. 1013-1018 https://doi.org/10.1016/S0142-1123(99)00103-6
  6. Hong, S. G., and Lee, S. B., 2003, 'Dynamic Strain Aging Phenomena during Tensile and Low-Cycle Fatigue Deformations in 316L Stainless Steel', J. Kor. Inst. Met. Mater., Vol. 41, No. 10, pp. 636-644
  7. Bhanu Sankara Rao K.,Valsan, M., Sandhya, R., Mannan, S. L., Rodriguez, P., 1993, 'An Assessment of Cold Work Effects on Strain-Controlled Low Cycle Fatigue Behavior of Type 304 Stainless Steel', Metall. Trans., Vol. 24A, pp. 913-924 https://doi.org/10.1007/BF02656512
  8. Plumbridge, W. J., Dalski, M. E. and Castle, P. J, 1980, 'High Strain Fatigue of a Type 316 Stainless Steel', Fract. Eng. Mater. Struct., Vol. 3, pp. 177-188 https://doi.org/10.1111/j.1460-2695.1980.tb01112.x
  9. Ganesh Sundara Raman S. and Padmanabhan, K. A., 1996, 'Effect of Prior Cold Work on the Room-Temperature Low Cycle Fatigue Behavior of AISI 304LN Stainless Steel', Int. J. Fatigue, Vol. 18, No. 2, pp. 71-79 https://doi.org/10.1016/0142-1123(95)00078-X
  10. Sherman, A. M., 1975, 'Fatigue Properties of High Strength-Low Alloy Steels', Metall. Trans., Vol. 6A, pp. 1035-1040 https://doi.org/10.1007/BF02661357
  11. Laird, C.,Wang, Z., Ma, B. T. and Chai, H. F., 1989, 'Low Energy Dislocation Structures Produced by Cyclic Softening', Mater. Sci. Eng., Vol. A113, pp. 245-257
  12. Feltner, C. E., Laird, C., 1976, 'Cyclic Stress-Strain Response of F. C. C. Metals and Alloys', Acta Metall., Vol. 15. pp. 1621-1653 https://doi.org/10.1016/0001-6160(67)90137-X
  13. Pickard, A. C., Knott, J. E., 1988, 'ASTM STP 942,Effects of Testing Method on Cyclic Hardening Behavior in Face-Centered-Cubic Alloys', ASTM STP 942, pp. 58-76
  14. Kanazawa, K.,Yamaguchi, K, and Nishijima, S., 1988, 'Mapping of Low Cycle Fatigue Mechanisms at Elevated Temperatures for an Austenitic Stainless Steel', ASTM STP 942, pp. 519-530
  15. Bressers, J., 1978, in High Temperature Alloys, Their Exploitable Potential, Elsevier Applied Science, Amsterdam, pp. 385-410
  16. Ellyin, F., 1985, 'Effect of Tensile-Mean-Strain on Plastic Strain Energy and Cyclic Response', J. Eng. Mater. Tech., Vol. 107, pp. 119-125 https://doi.org/10.1115/1.3225786
  17. Wittke, H., 1997, 'Description of Stress-Strain Hysteresis Loops with a Simple Approach', Int. J. Fatigue, Vol. 19, No. 2, pp. 141-149 https://doi.org/10.1016/S0142-1123(96)00059-X

Cited by

  1. Fatigue Life Analysis and Prediction of 316L Stainless Steel Under Low Cycle Fatigue Loading vol.40, pp.12, 2016, https://doi.org/10.3795/KSME-A.2016.40.12.1027