DOI QR코드

DOI QR Code

Identification of Quantitative Trait Loci (QTLs) Associated with Oil and Protein Contents in Soybean (Glycine max L.)

콩에서 Microsatellite marker률 이용한 oil 및 단백질 함량의 양적형질 유전자좌의 분석

  • Published : 2004.06.01

Abstract

Soybean oil and protein contents are very important as a nutritional component of food. The seed composition as oil and protein are polygenic traits. In this study, the Keunolkong${\times}$Iksan10 populations were evaluated with SSR markers to identify QTLs related to oil and protein contents. Three related independent QTLs near the marker satt100 on LG C2, satt546 on LG D1b+W and satt418 on LG L were identified oil contents. The three independent QTLs near the marker satt556 on LG B2, satt414 on LG J and satt238 on LC L were identified of protein contents. In the results of this study, common QTLs on LG L was associated with seed oil and protein contents. In the result of this study, it is believed that the seed composition material as oil and protein contents were mainly controlled by environmental stresses and they are seed size on genotypes.

콩의 oil 및 단백질은 식품에서 매우 중용한 영양학적인 구성요소이다. Oil및 단백질과 같은 종자 구성물질들은 polygenetic 형질들로 되어있다. 본 시험은 큰올콩과${\times}$익산10호의 RIL 계통과 SSR marker를 이용하여 유전자 지도를 작성하고, 이를 바탕으로 oil 및 단백질 함량과 관련된 양적형질 유전자좌(QTLs)를 탐색하였다. Oil함량과 관련된 QTLs는 연관군 C2와 satt100과 연관군 DIb+W의 satt546및 연관군 L의 satt418의 세 개의 독립적인 QTLs를 확인하였다. 단백질 함량에 있어서는 연관군 B2와 J 및 L에 각각 satt556과 satt414 및 satt238의 marker에서 독립적인 QTLs를 확인하였다. 본시험의 결과, oil 및 단백질 함량과 관련된 공통의 QTL은 연관군 L이었다. 한편, oil 및 단백질과 같은 종자구성물질은 주로 환경적인 stress및 종자의 크기 등에 의해서 구성되어지는 것으로 생각된다.

Keywords

References

  1. Crop Sci. v.39 Yield and quality of soymilk and tofu made from soybean genotypes grown at four locations Bhardwaj,H.L.;A.S.Bhagsari;J.M.Joshi;M.Rangappa;V.T.Sapra;M.S.Rao https://doi.org/10.2135/cropsci1999.0011183X0039000200017x
  2. Crop Sci. v.37 Mapping QTL for seed protein and oil contents of eight soybean population Brummer,E.C.;G.L.Graef;J.Orf;J.R.Wilcox;R.C.Shoemaker https://doi.org/10.2135/cropsci1997.0011183X003700020011x
  3. Soybeans: improvement, production, and Use(Agronomy, series) v.16 Quantitative genetics: results relevant to soybean breeding Burton,J.W.;Wilcox,J.R.(ed.)
  4. Crop Sci. v.39 An integrated genetic linkage map of the soybean genome Cregan,P.B.;T.Jarvik;A.L.Bush;R.C.Shoemaker;K.G.Lark;A.L.Kahler;N.Kaya;T.T.VanToai;D.G.Lohnes;J.Chung;J.E.Specht https://doi.org/10.2135/cropsci1999.3951464x
  5. Theor. Appl. Genet. v.83 RFLP analysis of soybean seed protein and oil contents Diers,B.W.;R.Keim;W.R.Fehr;R.C.Shoemaker
  6. J. Genet. v.8 The combination of linkage values and the calculation of distances between the loci of linked factors Haldane,J.B.S.
  7. Soybean Genet. Newsl. v.15 A rapid protocol for isolating soybean DNA Keim,P.;T.C.Olson;R.C.Shoemaker
  8. Theor. Appl. Genet. v.88 Epistatic expression of quantitative trait loci(QTL) in soybean (Glycine max (L.) Merr.) determined by QTL association with RFLP alleles Lark,K.G.;J.Orf;L.M.Mansur
  9. Theor. Appl. Genet. v.93 RFLP loci associated with soybean seed protein and oil content across populations and locations Lee,S.H.;M.A.Bailey;M.A.R.Mian;T.E.Carter;E.R.Shipe;D.A.Ashley;W.A.Parrott;R.S.Hussey;H.R.Boerma https://doi.org/10.1007/BF00224058
  10. Mamm. Genome v.10 Overview of QTL mapping software and introduction to Map Manager QT Mainly,K.F.;J.M.Olson https://doi.org/10.1007/s003359900997
  11. Theor. Appl. Genet. v.86 Interval mapping of quantitative trait loci for reproductive, morphological, and seed traits of soybean(Glycine max L.) Mansur,L.M.;K.G.Lark;H.Kross;A.Oliveira
  12. Crop Sci. v.36 Genetic mapping of agronomic traits using recombinant inbred lines of soybean [Glycine max (L.) Merr.] Mansur,L.M.;J.H.Orf;K.Chase;T.Jarvik;P.B.Cregan;K.G.Lark https://doi.org/10.2135/cropsci1996.0011183X003600050042x
  13. Molecular Breeding v.6 Identification of quantitative trait loci controlling sucrose content in soybean (Glycine max) Maughan,P.J.;M.A.Saghai Maroof;G.R.Buss https://doi.org/10.1023/A:1009628614988
  14. J. Biomed Biotech. v.1 Genomic regions that underlie soybean seed isoflavone content Meksem,K.;V.N.Njit;W.J.Banz;M.J.Iqbal;My.M.Kassem;D.L.Hyten;J.Yuang;T.A.winters;D.A.Lightfoot https://doi.org/10.1155/S1110724301000110
  15. Adv. Agron. v.46 DNA markers in plant improvement Paterson.A.H.;S.D.Tanksley https://doi.org/10.1016/S0065-2113(08)60578-7
  16. Food Research International v.35 Stability of soybean seed composition and its effect on soymilk and tofu yield and quality Poysa,V.;L.Woodrow https://doi.org/10.1016/S0963-9969(01)00125-9
  17. Theor. Appl. Genet. v.98 RFLP markers associated with soybean cyst nematode resistance and seed composition in a Peaking × Essex population Qiu,B.X.;P.R.Arell;D.A.Sleper https://doi.org/10.1007/s001220051080
  18. SAS/STAT user's guide (version 6.4th ed.) v.2 SAS Institute, Inc.

Cited by

  1. Analysis of Quantitative Trait Loci for Yield Component Traits in Soybean Using Recombinant Inbred Lines vol.17, pp.5, 2007, https://doi.org/10.5352/JLS.2007.17.5.599