Catalytic Oxidoreduction of Pyruvate/Lactate and Acetaldehyde/Ethanol Coupled to Electrochemical Oxidoreduction of $NAD^+$/NADH

  • Shin, In-Ho (Department of Biological Engineering, Seokyeong University) ;
  • Jeon, Sung-Jin (Department of Biological Engineering, Seokyeong University) ;
  • Park, Hyung-Soo (Samsung Engineering R&D Center) ;
  • Park, Doo-Hyun (Department of Biological Engineering, Seokyeong University)
  • Published : 2004.06.01

Abstract

We deviced a new graphite-Mn(II) electrode and found that the modified electrode with Mn(II) can catalyze NADH oxidation and $NAD^+$ reduction coupled to electricity production and consumption as oxidizing agent and reducing power, respectively. In fuel cell with graphite-Mn(II) anode and graphite-Fe(III) cathode, the electricity of 1.5 coulomb (A x s) was produced from NADH which was electrochemically reduced by the graphite-Mn(II) electrode. When the initial concentrations of pyruvate and acetaldehyde were adjusted to 40 mM and 200 mM, respectively, about 25 mM lactate and 35 mM ethanol were produced from 40 mM pyruvate and 200 mM acetaldehyde, respectively, by catalysis of ADH and LDH in the electrochemical reactor with $NAD^+$ as cofactor and electricity as reducing power. By using this new electrode with catalytic function, the bioelectrocatalysts are engineered; namely, oxidoreductase (e.g., lactate dehydrogenase) and $NAD^+$ can function for biotransformation without electron mediator and second oxidoreductase for $NAD^+$/NADH recycling.

Keywords

References

  1. Anal. Chem. v.72 Electrocatalytic detection of NADH and glycerol by $NAD^+$-modified carbon electrodes Alverez Gonzales,M.I.;S.B.L.Saidman;M.J.LoboCastanon;A.J.Miranda Ordiere;P.Tunon Blanco https://doi.org/10.1021/ac9908344
  2. J. Am. Chem. Soc, v.123 A miniature biofuel cell Chen,T.;S.Calabress Barton;G.Binyamin;Z.Gao;Y.Zhang;H.H.Kim;A.Heller https://doi.org/10.1021/ja0163164
  3. Appl. Biochem. Biotechnol. v.14 Regeneraion of nicotinamide cofactors for use in organic synthesis Chenault,K.K.;G.M.Whitesdies https://doi.org/10.1007/BF02798431
  4. Immobilized Enzymes, Research and Development Chibata,I.(ed.)
  5. J. Chem. Soc. Perkin Trans. v.1 Enzymes in organic synthesis:Oxidoreductions Fang,J.M.;C.H.Lin
  6. J. Am. Chem. Soc,. v.124 Structural analysis of metal ion ligation to nucleotieds and nucleic acids using pulsed EPR spectroscopy Hoogstraten,C.G.;C.V.Grant;T.E.Horton;V.J.DeRose;R.D.Britt https://doi.org/10.1021/ja0112238
  7. The Chemical Synthesis of Peptide John,J.
  8. J. Electronal. Chem. v.479 A non compartmentalized glucose/O₂biofuel cell by bioengineered electrode surfaces Katz,E.;I.Willner;A.B.Kotyar https://doi.org/10.1016/S0022-0728(99)00425-8
  9. J. Microbiol. Biotechnol. v.13 Effect of Lactobacillus fermentum MG590 on alcohol metabolism and liver function in rats Kim,J.H.;H.J.Kim;J.H.Son;H.N.Chun;J.O.Yang;S.J.Choi;N.S.Paek;G.H.Choi;S.K.Kim
  10. Biotechnol. Bioeng. v.52 Enzyme engineering aspects of biocatalysis:Cofactor regeneration as example Kragl,U.;W.Kruse;W.Wandrey https://doi.org/10.1002/(SICI)1097-0290(19961020)52:2<309::AID-BIT11>3.0.CO;2-E
  11. Recl. Trav. Chim. Pays-Bas. v.115 Alcohol dehydrogenase catalyzed production of chiral hydrophobic alcohols. A new approach leading to a nearly waste-free process Kruse,W.;W.Hummel;U.Kragl https://doi.org/10.1002/recl.19961150409
  12. J. MIcrobiol. Biotechnol. v.13 The membrane bound NADH:Ubiquinone oxidoreductase in the aerobic respiratory chain of marine bacterium Pseudomonas nautical Lee,Y.J.;K.H.Cho;Y.J.Kim
  13. Iron in Soil and Clay Minerals Solubility and redox equilibria of iron compounds in soil Lindsay,W.L.;J.W.Stucki(ed.);B.A.Goodman(ed.);U.Schwertmann(ed.)
  14. Immobilized Enzymes for Industrial Reactor Messing,R.A.(ed.)
  15. Enzyme Microbiol. Technol. v.15 Electromical bioreactor with immobilized glucose-6-phosphate dehydrogenase on the rotation graphite disc electrode modified with phenazine methosulfate Miyawaki,D.;T.Yano https://doi.org/10.1016/0141-0229(93)90087-I
  16. J. Electroanal. Chem. v.509 Effect of pH on the catalytic electroxidation of NADH using different electron mediators immobilized on zirconium phosphate Munteanu,F.D.;L.T.Kubota;L.Gorton https://doi.org/10.1016/S0022-0728(01)00376-X
  17. J. Bacteriol. v.181 Utilization of electrically reduced neutral red by Actinobacillus succinogenes:Physiological function of neutral red in membrane-driven fumarate reduction and energy generation Park,D.H.;J.G.Zeikus
  18. Appl. Microbiol. Biotechnol. v.59 Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens Park,D.H.;J.G.Zeikus https://doi.org/10.1007/s00253-002-0972-1
  19. Biotech. Bioengin. v.81 Improved fuel cell and elecrode desings for producing electricity from microbial degradation Park,D.H.;J.Gregory Zeikus https://doi.org/10.1002/bit.10501
  20. Appl. Environ. Microbiol. v.66 Electricity generation in microbial fuel cells using neutral red and an electronophore Park,D.H.;J.G.Zeikus https://doi.org/10.1128/AEM.66.4.1292-1297.2000
  21. Chimicaoggi Some recent advances in the synthesis of optically pure fine chemicals using enzyme-catalysed reaction in the key step Roberts,S.M.;N.J.Turner;A.J.Willetts
  22. Biochim. Biophys. Acta v.1553 Succinate:quinone oxidoreductased:An overview Roy,C.;D.Lancaster https://doi.org/10.1016/S0005-2728(01)00240-7
  23. J. MIcrobiol. Biotechnol. v.13 Effect of oxidation-reduction potential on denitrification by Ochrobactrum anthropi SY509 Song,S.H.;S.H.Yeom;S.S.Choi;Y.J.Yoo
  24. Soil Sci. Soc. Am. J. v.41 Oxidation-reduction mechanism for structural iron in nontronite Stucki,J.W.;C.B.Roth https://doi.org/10.2136/sssaj1977.03615995004100040041x
  25. The Chemistry of Clay Minerals Weaver,C.E.;L.D.Pllard
  26. Clin. Chim. Acta v.45 Quantitation of lactate dehydrogenase isoenzyme patterns of the developing human fetus Werthamer,S.;A.Frieber;L.Amaral https://doi.org/10.1016/0009-8981(73)90137-X
  27. Enzymes in Synthetic Organic Chemistry Wong,C.H.;G.M.Whitesides