DOI QR코드

DOI QR Code

Effects of Systematic Variation Application of Fe, Mn, Cu, and Zn on the Growth, Root/Nodule, and Flowering of Orchardgrass and White Clover

Fe, Mn, Cu 및 Zn의 Systematic Variation 시비가 Orchardgrass 및 White clover의 생육, 뿌리/근류 및 개화에 미치는 영향

  • 정연규 (순천대학교 농업생명과학대학)
  • Published : 2004.06.01

Abstract

This pot experiment was. conducted to investigate the effects of systematic variation application of Fe, Mn, Cu, and Zn on forage performance of orchardgrass and white clover. The treatments of systematic variation were 0/100, 25/75, 50/50, 75/25, and 100/0% in the Fe/Cu(trial-1), Mn/Zn(trial-2), and Fe + Cu/Mn + Zn(trial-3), respectively. The treatments of Fe/Mn/Cu/Zn(trial-4) were composed of 70% in main element and 10% in other 3 elements, respectively. 1. In general, the unbalanced applications of Fe and Mn resulted in the Mn and Fe deficiencies(chlorosis) on white clover, respectively, because of the antagonism between Fe and Mn. In white clover, the traits of growth, root/nodule, and flowering, which were influenced by the systematic variation of Fe, Mn, Cu, and Zn, were closely correlated to each other. In the Fe/Cu trial, the 0/100 and 25/75 induced a Fe-deficiency on white clover, and the 0/100 also showed poor root growth and flowering. In addition, the 50/50 and 75/25 showed an early flowering of white clover. 2. In the Mn/Zn trial, the 0/100 induced a severe Mn-deficiency(chlorosis) on white clover. The 25/75 and 50/50, however, diminished the chlorosis symptom. The 75/25 and 100/0 showed generally good root growth and flowering of white clover. 3. In the Fe + Cu/Mn + Zn trial, the 0/100 induced a Fe-deficiency, and the 100/0 induced a Mn-deficiency on white clover, which were correlated to the poor root growth and flowering. The 75/25 showed good root growth and flowering of white clover. 1be flowering of white clover tended to be more influenced by the Fe + Cu than by the Mn + Cu ratios. 4. In the Fe/Mn/Cu/Zn trial, the Fe and Mn deficiencies on white clover, which were influenced by the Mn and Fe treatments, also occurred. The Cu and Zn-deficiency symptoms, however, were not recognized. General differences have been showed in the numbers of flowers as following orders; Zn > Cu > Mn > Fe - 70% treatments.

Orcharduass 및 white clover에서 미량요소 Fe, Mn, Cu, Zn의 systematic variations 시비가 목초의 생육, 재화, 수량, 양분 함량 등에 미치는 영향 등을 구명하였다. 다량요소 양분을 동일량 시비한 조건에서 시험군-1(Fe/Cu), 시험군-2(Mn/Zn), 시험군-3(Fe+Cu/Mn+Zn)의 처리내용은 시험군별 총 시비량을 systematic variation 방법으로 각각 0/100, 25/75, 50/50, 75/25, 100/0% 비율로 나누어 시비 처리 하였고, 시험군-4(FeMn/Cu/Zn)에서는 각 기준처리 70%, 기타처리는 각각 10%(합계 100%) 비율로 시비 처리하였다. 1) White clover에서 Fe과 Mn 간의 길항작용에 의한 Mn과 Fe결핍 황화현상을 블 수 있었다. 또한 처리별 뿌리생육, 근류와 개화에 미치는 영향은 일반적으로 상호 밀접한 연관성을 보였다. Fe/Cu 비율시험에서 white clover는 0/100 및 25/75% 처리에서 F-결핍 황화현상이 나타났으며 100/0%처리는 다른 처리에 비해서 뿌리생육(색도, 밀도 및 근류형성) 및 재화/화아 수가 불량하였다. 그러고 50/50과 75/25% 처리에서는 다른 처리에 비해서 다소 빠른 개화를 보였다. 2) Mn/Zn 비율시험에서 white clover는 특히 0/100% 처리에서 심한 Mn 결핍 황화현상이 나타났으며 또한 25/75 및 50/50 처리에서도 이 증상을 다소 불 수 있었다. 높은 Mn/Zn 비율의 처리에서 일반적으로 양호한 부리생육과 증가된 개화/화아 수를 보였다. 3) Fe+Cu/Mn+Zn 비율시험에서 white clover는 0/100% 처리에서 Fe 결핍 황화현상을 그리고 100/0 처리에서는 Mn 결핍 황화현상을 보였고 모두 뿌리생육의 불량과 개화/화아 수 감소를 보였다. 75/25 비율에서 가장 양호한 뿌리생육과 많은 개화/화아 수를 보였다. 4) Fe/Mn/Cu/Zn 비율시험에서 white clover는 처리비율에 따라서 Fe과 Mn 결핍증상이 나타났으며 반면에 Cu와 Zn 결핍증상은 나타나지 않았다. Zn>Cu>Mn>Fe-7% 시비처리 순으로 개화/화아 수가 많았다.

Keywords

References

  1. Bergmann, W. and P. Neubert. 1976. Pflanzen-diagnose und Pflanzenanalyse. VEB Gustav Fischer Verlag, Jena
  2. Bolle-Jones, E.W. 1957. Copper, its effects on thegrowth and composition of the rubber plant. Plant and Soil, 4:160-178
  3. Bond, G. and E.J. Hewitt. 1967. The significance of copper for N fixation in nodulated Alnus and Casuarina plants. Plant and Soil, 27:447-449 https://doi.org/10.1007/BF01376337
  4. Brown, J.C., R.S. Holmes and L.O. Tiffin. 1959. Hypotheses concerning iron chlorosis. Soil Sci. Soc. Am. Proc. 23:231-234 https://doi.org/10.2136/sssaj1959.03615995002300030023x
  5. Bussler, W. 1958. Manganmangelsymptome bei hoeheren Pflanzen. Z. f. Pflanzenemaehr., Dueng., Bodenkd. 81:225-242 https://doi.org/10.1002/jpln.19580810305
  6. Cumbus I.P., D.J. Hornsey and L.W. Robinson.1977. The influence of P, Zn and Mn on absorption and translocation of Fe in watercress. Plant and Soil. 48:651-660 https://doi.org/10.1007/BF00145775
  7. Finck, A. 1969. Pflanzenemaehrung in Stick worten, I. Aufl. Verlag Ferdinand Hirt, Kiel
  8. Finger, H. 1951. Die Wirkung von Bor, Mangan, Kupfer und steigenden Kalkgaben auf rohhu-mushaltigem Heidesandboden. Landw. Forschung, 3:89-112
  9. Gupta U.C. and E.W. Chipman. 1976. Influenceof iron and pH on the yield and iron, manganese, zinc, and nitrogen concentration of carrots grownon sphagnum peat soil. Plant and Soil. 44:559-566 https://doi.org/10.1007/BF00011375
  10. Hewitt, E.J., E.W. Bolle-Jones and P. Mites. 1954. The production of copper, zinc and molybdenum deficiencies in crop plants grown in sand culture with special reference to some effects of water supply and seed reserve. Plant and Soil, 5:205-222 https://doi.org/10.1007/BF01395896
  11. Hiatt, A.J. and J.L. Ragland. 1963. Manganesetoxicity of burley tobacco. Agron. J. 55:47-49 https://doi.org/10.2134/agronj1963.00021962005500010017x
  12. Kirsch, R.K., M.E. Harward and R.G. Petersen. 1960. Interrelationship among iron, manganese, and molybdenum in the growth and nutrition oftomatoes grown in culture solution. Plant and Soil. 12:259-275 https://doi.org/10.1007/BF01343653
  13. Moraghan, J.T. and T.J. Freeman. 1978. Influence of FeEDDHA on growth and manganese accumulation in flax. Soil Sci Soc. Am. Proc. 42:455-460 https://doi.org/10.2136/sssaj1978.03615995004200030016x
  14. Nieschlag, F. 1966. Versuche ueber den Einfluss einiger Spurenelemente auf die Leistung von Milchviehweiden. Landw. Forschung. 19:191-195
  15. Osullivan, M. 1969. Iron metabolism of grasses. I. Effect of iron supply on some inorganic andorganic constituents. Plant and Soil. 31:451-462 https://doi.org/10.1007/BF01373816
  16. Rahimi, A. 1972. Kupfermangelsymptome und ihre Entwicklung bei hoeheren Pflanzen. Dissertatjon, D83, Nr. 14, TU Berlin
  17. Rahimi, A. and W. Bussler. 1973. Der Einflussunterschiedlicher Zink Gaben auf die Entwicklung von Mais. Z. f. Pflanzenemaehr., Dueng., Bodenkd. 135:267-283
  18. Riekels, J.W. and J.C. Lingle. 1966. Iron uptakeand translocation by tomato plants as influencedby root temperature and manganese nutrition.Plant Physiol. 41:1095-1101 https://doi.org/10.1104/pp.41.7.1095
  19. Sommers, I.I. and J.W. Shive. 1942. The iron-manganese relation in the plant metabolism. Plant Physiol. 17:582-602 https://doi.org/10.1104/pp.17.4.582
  20. Vose, P.B. and D.G. Jones. 1963. The interaction of manganese and calcium on nodulation and growth in varieties of Trifolium repens. Plant and Soil, 18:372-385 https://doi.org/10.1007/BF01347236
  21. Woodhouse, W.W.Jr. 1964. Nutrient deficiencies in forage grasses, In; Hunger signs in crops, 3rd edit. David Mackay Comp., New York. 181-218

Cited by

  1. Effects of Systematic Variation Application of Fe, Mn, Cu and Zn on these Contents in Orchardgrass and White Clover vol.24, pp.4, 2004, https://doi.org/10.5333/KGFS.2004.24.4.271
  2. Effects of Systematic Variation Application of Fe, Mn, Cu, and Zn on These Relative Contents, Uptake Amounts, and Mutual Ratios in Orchardgrass and White Clover vol.24, pp.4, 2004, https://doi.org/10.5333/KGFS.2004.24.4.281