Characterization of Biocompatible Polyelectrolyte Complex Multilayer of Hyaluronic Acid and Poly-L-Lysine

  • Hahn, Sei-Kwang (Department of Bioengineering, Box 352255, University of Washington) ;
  • Allan S. Hoffman (Department of Bioengineering, Box 352255, University of Washington)
  • Published : 2004.06.01

Abstract

A biocompatible polyelectrolyte complex multilayer (PECML) film consisting of poly-L-lysine (PLL) as a polycation and hyaluronic acid (HA) as a polyanion was developed to test its use for surface modification to prevent cell attachment and protein drug delivery. The formation of PECML through the electrostatic interaction of HA and PLL was confirmed by contact angle measurement, ESCA analysis, and HA content analysis. HA content increased rapidly up to 8 cycles for HA/PLL deposition and then slightly increased with an increasing number of deposition cycle. In vitro release of PLL in the PECML continued up to 4 days and ca. 25% of HA remained on the chitosan-coated cover glass after in vitro release test for 7 days. From the results, PECML of HA and PLL appeared to be stable for about 4 days. The surface modification of the chitosan-coated cover glass with PECML resulted in drastically reduced peripheral blood mononuclear cell (PBMC) attachment. Concerned with its use for protein drug delivery, we confirmed that bovine serum albumin (BSA) as a model protein could be incorporated into the PECML and its release might be triggered by the degradation of HA with hyaluronidase.

Keywords

References

  1. Science v.277 Fuzzy nanoassemblies: Toward layered polymeric multicomposites Decher,G. https://doi.org/10.1126/science.277.5330.1232
  2. Biosens. Bioelectr. v.9 New composite films for biosensors: Layer-by-layer adsorbed films of polyelectrolytes Decher,G.;B.Lehr;K.Lowack;Y.Lvov;J.Schmitt https://doi.org/10.1016/0956-5663(94)80065-0
  3. J. PhysChem. v.102 Electroluminescence studies on self-assembled films of PPV and CdSe nanopartiles Gao,M.;B.Richter;S.Kirstein;H.Mhwald
  4. Poly. Adv. Technol. v.9 Step-wise polyelectrolyte addembly on particle surfaces B:A novel approach to colloid design Sukhorukov,G.B.;E.Donath;S.A.Davis;H.Lichtenfeld;F.Caruso;V.I.Popov;H.Mohwald https://doi.org/10.1002/(SICI)1099-1581(1998100)9:10/11<759::AID-PAT846>3.0.CO;2-Q
  5. Macromol. v.35 Enzymatic hydrolysis of a layer-by-layer assembly prepared from chitosan and dextran sulfate Serizawa,T.;M.Yamaguchi;M.Akashi https://doi.org/10.1021/ma012153s
  6. J. Am. Chem. Soc. v.124 Construction of hydrolytically-degradable thin films via layer-by-layer deposition of degradable polyelectrolytes Vazquez,E.D.;M.Dewitt;PT.Hammond;D.M.Lynn https://doi.org/10.1021/ja026405w
  7. Langmuir v.17 Protein adsorption onto auto-assembled polyelectrolyte films Ladam,G.;S.Pierre;F.J.G.Cuisinier;G.Decher;J.C.Vogel https://doi.org/10.1021/la0013087
  8. Langmuir v.13 Assembly of alternating polyelectrolyte and protein multilayer films for immunosensing Caruso,F.;K.Niikura;D.N.Furlong;Y.Okahata https://doi.org/10.1021/la9608223
  9. Wenner-Gren International Series v.72 The Chemistry, Biology and Medical Applications of Hyaluronan and its Derivatives Laurent,T.C.
  10. J. Rheumatol. v.20 Viscosupplementation: A new concept in the treatment of osteoarthritis Balazs,E.A.;J.L.Denlinger
  11. Healon (Sodium Hyaluronate) A Guide to Its Use in Ophthalmic Surgery Sodium hyaluronate and viscosurgery Balazs,E.A.;Miller,D.(ed.);Stegmann,R.(ed.)
  12. Crit. Rev. Therap. Carr. Sys. v.15 Hyaluronate derivatives in drug delivery Verruysse,K.P.;G.D.Prestwich
  13. Science v.228 Angiogenesis in duced by degradation products of hyaluronic acid West,D.C.;I.N.Hampson;F.Arnold;S.Kumar https://doi.org/10.1126/science.2408340
  14. Biomaterials v.19 Semisynthetic resorbable meterials from hyaluronan esterification Campoccia,D.;P.Doherty;M.Radice;P.Brun;G.Abatangelo;D.F.Williams https://doi.org/10.1016/S0142-9612(98)00042-8
  15. Bioconj. Chem. v.2 Chemical modification of hyaluronic acid by carbodiimides Kuo,J.W.;D.A.Swann;G.D.Prestwich https://doi.org/10.1021/bc00010a007
  16. US Patent 4,582,865 Cross-linked gels of hyaluronic acid and products containing such gels Balazs,E.A.;A.Leshchiner
  17. US Patent 4,713,448 Chemically modified hyaluronic acid preparation and method of recovery thereof from animal tissues Balazs,E.A.;A.Leshchiner
  18. J. Control. Rel. v.69 Crosslinked hyaluronic acid hydrogel fils: new biomaterials for drug delivery Luo,Y.;K.Kirker;G.D.Prestwich https://doi.org/10.1016/S0168-3659(00)00300-X
  19. Japanese Patent 2003-385054 Sustained release formulation of protein drugs Hahn,S.;T.Shimobouji
  20. Japanese Patent 2002-338167 Controlled release of protein drugs Hahn,S.;T.Shimobouji;T.Nakaura
  21. Biomaterials v.24 Disulfide-crosslinked hyaluronan-gelatin hydrogel fimls: A covalent mimic of the extracellular matrix for in vitro cell growth Shu,X.Z.;Y.Liu;F.Palumbo;G.D.Prestwich https://doi.org/10.1016/S0142-9612(03)00267-9
  22. Biomaterials v.25 In situ crosslinkable hyaluronan hydrogels for tissue engineering Shu,X.Z.;Y.Liu;F.Palumbo;Y.Luo;G.D.Prestwich https://doi.org/10.1016/j.biomaterials.2003.08.014
  23. Langmuir v.17 Buildup mechanism for poly(L-lysine)/hyaluronic acid films onto a solid surface Picart,C.;P.Lavalle;P.Hubert;F.J.G.Cuisinier;G.Decher;P.Schaaf;J.C.Vogel https://doi.org/10.1021/la010848g
  24. Tiss. Eng. v.6 Improvement of Schwann cell attachment and proliferation on modified hyaluronic acid strands by polylysine Hu,M.;E.E.Sabelman;C.Tsai;J.Tan;V.R.Hentz https://doi.org/10.1089/10763270050199532
  25. Anal. Biochem. v.4 A modified uronic acid carbazole reaction Bitter,T.;H.Muir https://doi.org/10.1016/0003-2697(62)90095-7
  26. J. Biomat. Sci. Polym. Ed. Anti-inflammatory drug release from hyaluronic acid hydrogels Hahn,S.;S.Jelacic;R.V.Maier;P.S.Stayton;A.S.Hoffman