DOI QR코드

DOI QR Code

Preparation of Porous Silica Support and TiO2 Coating by Sol-Gel Method

다공성 실리카 지지체 제조 및 Sol-Gel법에 의한 TiO2코팅

  • 한요섭 (한양대학교 지구환경시스템공학과) ;
  • 박재구 (한양대학교 지구환경시스템공학과)
  • Published : 2004.07.01

Abstract

A sol-gel method was applied to coat TiO$_2$ on porous silica prepared using slurry foaming method from silica. from the results of XRD, SEM, and BET, the anatase phase was firstly observed at the coated supports with the heated of 50$0^{\circ}C$. The coated supports with the heated of $700^{\circ}C$ had the maximum anatase peak, and the particle size of coated TiO$_2$ was about 1 ${\mu}{\textrm}{m}$. Bending strength and gas permeability of the porous silica were measured for the feasibility as a catalytic supports. In case of the uncoated porous materials with the strength of 2.4 MPa, the strength increased to 3.9∼4.3 MPa after the coating process regardless of the heating temperature. On the other hand, the permeability of the uncoated porous materials decreased from 770${\times}$10$^{-13}$ $m^2$ to 363${\times}$10$^{-13}$ $m^2$ after the coating process, and it decreased with the increasing heating temperature.

슬러리 발포법을 이용하여 다공성 실리카 지지체를 제조하였으며, 지지체 표면에 졸-겔법을 이용하여 TiO$_2$을 코팅하였다. TiO$_2$ 코팅층에 대한 XRD, SEM 및 BET 측정 결과, 열처리 온도가 50$0^{\circ}C$에서 TiO$_2$의 anatase 결정상이 나타나기 시작하여, $700^{\circ}C$에서 그 피크가 최대가 되었다. 이 때 결정 성장한 TiO$_2$ 입자의 크기는 약 1$mu extrm{m}$ 정도로 판명되었다. 또한, 촉매지지체로 활용성을 검토하기 위해 TiO$_2$코팅 전후로 지지체의 굽힘 강도와 기체 투과율을 측정하였다. 강도의 경우, 코팅 전 2.4 MPa에서 이후 3.9∼4.3MPa로 증가하였으나 열처리 온도의 영향에 의한 변화는 나타나지 않았다. 한편, 투과율은 코팅 전 770${\times}$$10^{-13}$ $m^2$에서 코팅 후 363${\times}$$10^{-13}$ $m^2$로 감소하였고 열처리 온도의 증가와 함께 감소하는 것으로 나타났다.

Keywords

References

  1. Porous Materials : Process technology and applications K. Ishizaki;S. Komarneni;M. Nanko
  2. Am. Ceram. Soc. Bull. v.76 Gelcasting Foams for Porous Ceramics S. Pilar
  3. Thin Solid Films v.310 Effect of Nb, Cr, Sn Additions on Gas Sensing Properties of $TiO_2$ Thin Films Z. Katarzyna;R. Marta;R. Mieczyslaw https://doi.org/10.1016/S0040-6090(97)00401-X
  4. Chem. Eng. Sci. v.50 Studies on Sol-Gel Derived Catalytic Filters S. Guido;S. Vito https://doi.org/10.1016/0009-2509(95)00183-6
  5. Thin Solid Films v.379 Effect of Surface Structure on Photocatalytic Activity of $TiO_2$ Thin Films Prepared by Sol-Gel Method Y. Jiaguo;Z. Xiujian;Z. Qingnan https://doi.org/10.1016/S0040-6090(00)01542-X
  6. Appl. Catal. v.71 Vanadium Oxide Monolayer Catalysts Preparation, Characterization and Catalytic Activity C. B. Geoffrey;S. T. Flamerz https://doi.org/10.1016/0166-9834(91)85002-D
  7. Appl. Catal. v.10 Influence of Phosphorous and Potassium Additives on the Properties of Vanadia/Titania Catalyst G. C. Bond;S. F. Tahir
  8. J. Porous Mater. v.9 Preparation of Porous Cordierite Using Gelcasting Method and its Feasibility as a Filter J. K. Park;J. S. Lee https://doi.org/10.1023/A:1020939018359
  9. Mater. Chem. Phys. v.9451 Preparation of Titanium(IV) Oxide Thin Film Photocatalyst by Sol-Gel Dip Coating R. S. Sonawane;S. G. Hegde;M. K. Dongare
  10. J. of Ceram. Soc. of Jpn. v.109 Observation and Segmentation of Gray Images of Surface Cells in Open Cellular Foams J. K. Park;S. H. Lee https://doi.org/10.2109/jcersj.109.S7
  11. Carbon v.41 Gas Flow through Highly Porous Graphite Matrices S. Biloe;S. Mauran https://doi.org/10.1016/S0008-6223(02)00363-9
  12. J. Kor. Ceram. Soc. v.38 Evaluation of Pore Size of Porous Support Using Modified Gas Permeation Method J. K. Park;H. J. Kim
  13. Mater. Sci. Eni. v.A209 Microstructure, Permeability and Mechanical Behavior of Ceramic Foams A. L. Roerio;M. S. Ana
  14. J. Am. Ceram. Soc. v.82 Assessment of Forchheimer's Equation to Predict the Permeability of Ceramic Foams D. M. I. Murilo;S. Pilar;R. S. Vania;C. P. Victor;R. C. Jose https://doi.org/10.1111/j.1151-2916.1999.tb02024.x
  15. J. Am. Ceram. Soc. v.81 Permeability and Structure of Cellular Ceramics : A Comparison between Two Preparation Techniques D. M. I. Murilo;S. Pilar;R. S. Vania;C. P. Victor;R. C. Jose https://doi.org/10.1111/j.1151-2916.1998.tb02782.x
  16. Anal. Chem. v.29 Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer A. S. Robert;M. Howord https://doi.org/10.1021/ac60125a006
  17. J. Am. Ceram. Soc. v.48 Kinetics of the Anatase-Rutile Transformation D. S. Rober;A. P. Joseph https://doi.org/10.1111/j.1151-2916.1965.tb14774.x
  18. Mater. Lett. v.36 Inhibitory Effect of the $Al_2O_3-SiO_2$ Mixed Additives on the Anatase-Rutile Phase Transformation J. Yang;J. M. F. Ferrira https://doi.org/10.1016/S0167-577X(98)00042-1
  19. Mater. Sci. Lett. v.17 Preparation of Fine $TiO_2$ Powders via Spray Hydrolysis of Titanium Tetraisopropoxide S. Gablenz;D. Voltzke;H. P. Albricht;J. Z. Neumann https://doi.org/10.1023/A:1006561318070
  20. Appl. Catal. B-Environ. v.44 Enhancement Effect of $TiO_2$ Immobilized on Activated Carbon Filter for the Photodegradation of Pollutants at Typical Indoor Air Level C. H. Ao;S. C. Lee https://doi.org/10.1016/S0926-3373(03)00054-7