DOI QR코드

DOI QR Code

Effect of Rhemanniae Radix on the Hyperglycemic Mice Induced with Streptozotocin

생지황(Rhemanniae Radix)이 Streptozotocin으로 유발된 고혈당 생쥐에 미치는 영향

  • Published : 2004.08.01

Abstract

This study has been carried out to investigate the effect of the administration of Rhemanniae Radix extract (5.0 mL/kg/day, RR group) on the hyperglycemic mice (HM group) induced with streptozotocin (STZ). In blood glucose level, RR group showed a significant decrease compared with HM group. The result of glucose tolerance test was more favorable in RR than HM group. A lot of insulin-positive cells and insulin-like growth factor-II positive materials were observed in RR group. A number of apoptotic particles were observed in the HM group, but several apoptotic nuclei were found in RR group. Pancreatic islets of HM group were destructed by the administration of STZ, but islets were recovered from damage in the RR group. These results suggest that administration of Rhemanniae Radix extract to the hyperglycemic mice prevent from the damage induced by STZ.

본 연구는 streptozotocin(STZ)을 투여하여 고혈당이 유발된 생쥐(UM군)에 생지황(Rhemanniae Radix) 전탕액의 투여(5.0 mL/kg/day, RR군)효과를 밝히기 위하여 수행하였다. STZ로 유발된 생쥐에 생지황 전탕액을 6주 동안 구강 투여한 후 혈당과 당내성 검사 및 췌장섬의 면역조직화학 검사를 하였다. 혈당수준은 RH군이 HM군에 비하여 2, 3, 5, 6주에서 유의성 있게 낮았으며, 당내성 검사 또한 RR군이 HM군에 비하여 우수한 결과를 보여 주었다. 6주 후 insulin-양성 5-세포들과 insulin-like growth factor-II 양성 물질들은 HM군에 비하여 RR군에서는 보다 높게 나타났다. HM군에서는 apoptosis 면역반응성 과립들이 췌장섬 전반에 걸쳐 관찰되었으나, RR군에서는 일부 세포들의 핵에서 면역반응성을 보여주었다. HM군에서는 대부분 췌장섬들이 파괴되어 소수 관찰되었으나 RR군은 다수 관찰되었다. 이와 같은 결과로 보아 생지황 전탕액은 STZ로 유발된 손상으로부터 췌장섬을 회복시키는 효과가 있는 것으로 사료된다.

Keywords

References

  1. Booner-Weir S. 2000. Islet growth and development in the adult. J Mol Endocrinol 24: 297-302. https://doi.org/10.1677/jme.0.0240297
  2. Swenne I. 1983. Effects of aging on the regenerative capacity of the pancreatic $\beta$-cell of the rat. Diabetes 32: 14-19. https://doi.org/10.2337/diabetes.32.1.14
  3. Ramiya VK. 2000. Reversal of insulin-dependent diabetes using islets generated in vitro from pancreatic stem cells. Nat Med 6: 278-282. https://doi.org/10.1038/73128
  4. Hellerstrom C, Swenne I. 1991. Functional maturation and proliferation of fetal pancreatic $\beta$-cells. Diabetes 40: 89-93. https://doi.org/10.2337/diab.40.2.S89
  5. Rooman I, Schuit F, Biuwens L. 1997. Effects of vascular endothelial growth factor on growth and differentiation of pancreatic ducteal epithelium. Lab Inves 76: 225-232.
  6. Le Roith D. 1997. Insulin-like growth factors. N Engl J Med 336: 633-640. https://doi.org/10.1056/NEJM199702273360907
  7. Hugl SR, White MF, Rhodes CJ. 1998. Insulin-like growth factor I (IGF-I)-stimulated pancreatic $\beta$-cell growth is glucose dependent. Synergistic activation of insulin receptor substrate-mediated signal transduction pathway by glucose and IGF in INS-1 cells. J Biol Chem 273: 17771-17779. https://doi.org/10.1074/jbc.273.28.17771
  8. Chen W, Salojin KV, Mi QS, Grattan M, Meagher TC, Zucker P, Delovitch TL. 2004. Insulin-like growth factor (IGF)-1/IGF-binding protein-3 complex: therapeutic efficacy and mechanism of protection against type 1 diabetes. Endocrinology 145: 627-638. https://doi.org/10.1210/en.2003-1274
  9. 신민교. 1986. 임상본초학. 남산당, 서울. p 297-298.
  10. Zhang R, Zhou J, Jia Z, Zhang Y, Gu G. 2004. Hypoglycemic effect of Rehmannia glutinosa oligosaccharide and alloxaninduced diabetic rats and its mechanism. J Ethnopharmacol 90: 39-43. https://doi.org/10.1016/j.jep.2003.09.018
  11. 중약대사전. 1997. 정담, 서울. p 2345.
  12. Cheta D. 1998. Animal models of type 1 (insulin-dependent) diabetes mellitus. J Pediatr Endocrinol Metab 11: 11-19.
  13. Maeda M, Yabuki A, Suzuki S, Matsumoto M, Taniguchi K, Nishinakagawa H. 2003. Renal lesions in spontaneous insulin-dependent diabetes mellitus in the nonobese diabetic mouse: acute phase of diabetes. Vet Pathol 40: 187-195. https://doi.org/10.1354/vp.40-2-187
  14. Mulder H, Gebre-Medhin S, Betsholtz C, Sundler F, Ahren B. 2000. Islet amyloid polypeptide (amylin)-deficient mice develop a more severe from of alloxan-induced diabetes. Am J Physiol Endocrinol Metab 278: E684-691. https://doi.org/10.1152/ajpendo.2000.278.4.E684
  15. Reddy S, Yip S, Karanam M, Poole CA, Ross JM. 1999. An immunohistochemical study of macrophage influx and the co-localization of inducible nitric oxide synthase in the pancreas of non-obese diabetic (NOD) mice during disease acceleration with cyclophosphamide. Histochem J 31: 303-314. https://doi.org/10.1023/A:1003765918017
  16. George M, Eduard A, Alba C, Cristina C, Jean CD, Bosh F. 2002. $\beta$-cell expression of IGF-I leads to recovery from type 1 diabetes. J Clin Invest 109: 1153-1163. https://doi.org/10.1172/JCI0212969
  17. Thrailkill K, Quattrin T, Baker L, Litton J, Dwigun K, Rearson M, Poppenheimer M, Kotlovker D, Giltinan D, Gesundheit N, Martha P Jr. 1997. Dual hormonal replacement therapy with insulin and recombinant human insulin-like growth factor (IGF)-I in insulin-dependent diabetes mellitus: effects on the growth hormone/IGF/IGF-binding protein system. J Clin Endocrinol Metab 82: 1181-1187. https://doi.org/10.1210/jc.82.4.1181
  18. Quattrin T, Thrailkill K, Baker L, Litton J, Dwigun K, Rearson M, Poppenheimer M, Giltinan D, Gesundheit N, Martha P Jr. 1997. Dual hormonal replacement with insulin and recombinant human insulin-like growth factor I in IDDM. Effects on glycemic control, IGF-I levels, and safety profile. Diabetes Care 20: 374-380. https://doi.org/10.2337/diacare.20.3.374
  19. Kim JS, Na CS. 2002. Effects of pear phenolic compound on the STZ-treated mice for induction of diabetes. J Korean Soc Food Sci Nutr 31: 1107-1111. https://doi.org/10.3746/jkfn.2002.31.6.1107
  20. Petrik J, Arany E, McDonald J, Hill J. 1998. Apoptosis in the pancreatic islet cells of the neonatal rat is associated with a reduced expression of insulin-like growth factor II that may act as a survival factor. Endocrinology 139: 2994-3004. https://doi.org/10.1210/en.139.6.2994

Cited by

  1. Hypoglycemic Effect of Sargassum ringgoldianum Extract in STZ-induced Diabetic Mice vol.17, pp.1, 2012, https://doi.org/10.3746/pnf.2012.17.1.008
  2. Hypoglycemic Effect of Padina arborescens Extract in Streptozotocin-induced Diabetic Mice vol.17, pp.4, 2012, https://doi.org/10.3746/pnf.2012.17.4.239
  3. Quality Characteristics and Antioxidant Activities of Rehmannia glutinosa JungKwa Prepared with Different Kinds of Sugars vol.30, pp.1, 2014, https://doi.org/10.9724/kfcs.2014.30.1.076
  4. Diphlorethohydroxycarmalol isolated from Ishige okamurae, a brown algae, a potent α-glucosidase and α-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice vol.615, pp.1-3, 2009, https://doi.org/10.1016/j.ejphar.2009.05.017
  5. Hypoglycemic effect of fermented soymilk added with bokbunja (Rubus coreanus Miquel) in diabetic mice vol.19, pp.4, 2010, https://doi.org/10.1007/s10068-010-0146-3
  6. Antioxidative Activity of a Medicinal Herb Mixture Prepared through the Traditional Antidiabetic Prescription vol.18, pp.6, 2011, https://doi.org/10.11002/kjfp.2011.18.6.916
  7. The hypoglycemic effect of fermented Pueraria thunbergiana extract in streptozotocin-induced diabetic mice vol.24, pp.6, 2015, https://doi.org/10.1007/s10068-015-0293-7
  8. Hypoglycemic Effects of a Medicinal Herb Mixture Prepared through the Traditional Antidiabetic Prescription vol.18, pp.6, 2011, https://doi.org/10.11002/kjfp.2011.18.6.923
  9. Phlorofucofuroeckol A isolated from Ecklonia cava alleviates postprandial hyperglycemia in diabetic mice vol.752, 2015, https://doi.org/10.1016/j.ejphar.2015.02.003
  10. Daidzein inhibits carbohydrate digestive enzymes in vitro and alleviates postprandial hyperglycemia in diabetic mice vol.712, pp.1-3, 2013, https://doi.org/10.1016/j.ejphar.2013.04.047
  11. Alleviating Effects of Baechu Kimchi Added Ecklonia cava on Postprandial Hyperglycemia in Diabetic Mice vol.18, pp.3, 2013, https://doi.org/10.3746/pnf.2013.18.3.163
  12. Octaphlorethol A: a potent α-glucosidase inhibitor isolated from Ishige foliacea shows an anti-hyperglycemic effect in mice with streptozotocin-induced diabetes vol.5, pp.10, 2014, https://doi.org/10.1039/C4FO00420E
  13. Polyopes lancifolia Extract, a Potent α-Glucosidase Inhibitor, Alleviates Postprandial Hyperglycemia in Diabetic Mice vol.19, pp.1, 2014, https://doi.org/10.3746/pnf.2014.19.1.005
  14. Effects of Anti-inflammatory and Rehmanniae radix Pharmacopuncture on Atopic Dermatitis in NC/Nga Mice vol.6, pp.2, 2013, https://doi.org/10.1016/j.jams.2012.10.007
  15. Dieckol isolated from Ecklonia cava inhibits α-glucosidase and α-amylase in vitro and alleviates postprandial hyperglycemia in streptozotocin-induced diabetic mice vol.48, pp.10, 2010, https://doi.org/10.1016/j.fct.2010.06.032
  16. Bioactive compounds extracted from Gamtae (Ecklonia cava) by using enzymatic hydrolysis, a potent α-glucosidase and α-amylase inhibitor, alleviates postprandial hyperglycemia in diabetic mice vol.21, pp.4, 2012, https://doi.org/10.1007/s10068-012-0150-x
  17. A phlorotannin constituent of Ecklonia cava alleviates postprandial hyperglycemia in diabetic mice vol.55, pp.1, 2017, https://doi.org/10.1080/13880209.2017.1291693
  18. 자구자(Hovenia dulcis Thunb) 추출물이 Streptozotocin으로 유발된 고혈당 생쥐에 미치는 영향 vol.34, pp.5, 2004, https://doi.org/10.3746/jkfn.2005.34.5.632
  19. Hypoglycemic Effect of Fermented Soymilk Extract in STZ-induced Diabetic Mice vol.14, pp.1, 2009, https://doi.org/10.3746/jfn.2009.14.1.008
  20. Rehmanniae Radix, an Effective Treatment for Patients with Various Inflammatory and Metabolic Diseases: Results from a Review of Korean Publications vol.20, pp.2, 2004, https://doi.org/10.3831/kpi.2017.20.010
  21. Sargassum yezoense Extract Inhibits Carbohydrate Digestive Enzymes In Vitro and Alleviates Postprandial Hyperglycemia in Diabetic Mice. vol.22, pp.3, 2004, https://doi.org/10.3746/pnf.2017.22.3.166
  22. Portulaca oleracea L. Extract Lowers Postprandial Hyperglycemia by Inhibiting Carbohydrate-digesting Enzymes vol.28, pp.4, 2004, https://doi.org/10.5352/jls.2018.28.4.421
  23. Sargassum sagamianum Extract Alleviates Postprandial Hyperglycemia in Diabetic Mice vol.23, pp.2, 2004, https://doi.org/10.3746/pnf.2018.23.2.122
  24. Inhibitory Effects of Loranthus Parasiticus Extract on Carbohydrate Digestive Enzymes and Postprandial Hyperglycemia vol.30, pp.1, 2004, https://doi.org/10.5352/jls.2020.30.1.18