Major Fe-Superoxide Dismutase (FeSOD) Activity in Pseudomonas putida is Essential for Survival Under Conditions of Oxidative Stress During Microbial Challenge and Nutrient Limitation

  • Kim, Young-Cheol (Agricultural Plant Stress Research Center and Inst. of Agri. Sci. and Tech., College of Agriculture and Life Sciences, Chonnam National University) ;
  • Kim, Cheol-Soo (Agricultural Plant Stress Research Center and Inst. of Agri. Sci. and Tech., College of Agriculture and Life Sciences, Chonnam National University) ;
  • Cho, Baik-Ho (Agricultural Plant Stress Research Center and Inst. of Agri. Sci. and Tech., College of Agriculture and Life Sciences, Chonnam National University) ;
  • Anderson, Anne-J. (Department of Biology, Utah State University)
  • Published : 2004.08.01

Abstract

An isolate of Pseudomonas putida has been found to aggressively colonize root tips and induce plant resistance to Fusarium wilt. However, P. putida mutants lacking Fe-superoxide dismutase (SOD) or both FeSOD and MnSOD activities are less competitive in root tip colonization. In the current study, the growth of an FeSOD mutant was found to be more sensitive than that of the wild-type or a MnSOD mutant to oxidative stress imposed by paraquat treatment and culturing with the soil fungus Talaromyces flavus, which generates reactive oxygen species. Also, the loss of culturability with an aging stationary-phase culture was greater for a double SOD mutant than an FeSOD mutant, while no reduction in culturability was observed with the wild-type and a MnSOD mutant under the same protracted stationary-phase conditions. Accordingly, it was concluded that FeSOD activity is the major form of SOD in P. putida and plays an essential role in survival under stress conditions when increased oxidative stress is encountered.

Keywords

References

  1. Plant Physiol. v.124 Hydrogen peroxide yields during the incompatible interaction of tobacco suspension cells inoculated with Phytophthora nictotianae Able, A. J.;D. I. Guest;M. W. Sutherland https://doi.org/10.1104/pp.124.2.899
  2. Biochem. Mol. Biol. Inter. v.34 Evidence for superoxide radical production by a simple flavoprotein: Glucose oxidase Al-Bekairi, A. M.;M. N. Nagi;H. A. Shoeb;H. A. Al-Sawaf
  3. Microbiology v.144 The viable but non-culturable phenomenon explained? Bloomfield, S. F.;G. S. A. B. Stewart;C. E. R. Dodd;I. R. Booth;E. G. M. Power https://doi.org/10.1099/00221287-144-1-1
  4. Mutat. Res. v.403 Effect of endogenous carotenoids and defective RpoS sigma factor on spontaneous mutation under starvation conditions in Escherichia coli: Evidence for the possible involvement of singlet oxygen Bridges, B. A.;A. Timms https://doi.org/10.1016/S0027-5107(98)00013-X
  5. Plant Physiol. v.85 Involvement of superoxide radical in extracellular ferric reduction by iron-deficient bean roots Carmark, I. D.;A. M. Van De Wetering;H. Marschner;H. F. Bienfait https://doi.org/10.1104/pp.85.1.310
  6. EMBO J. v.5 Isolation of superoxide dismutase mutants in Escherichia coli: Is superoxide dismutase necessary for aerobic life? Carlioz, A.;D. Touati
  7. Trends Food Sci. Technol. v.8 Inimical processes: Bacterial self-destruction and sub-lethal injury Dodd, C. E. R.;R. L. Sharman;S. F. Bloomfield;I. R. Booth;G. S. A. B. Stewart https://doi.org/10.1016/S0924-2244(97)01043-1
  8. Can. J. Microbiol. v.47 Modification of the protein expression pattern induced in the nitrogen-fixing actinomycete Frankia sp. strain ACN14a-tsr by root exudates of its symbiotic host Alnus glutinosa and cloning of the sodF gene Hammad, Y.;J. Marechal;B. Cournoyer;P. Normand;A. M. Domenach https://doi.org/10.1139/cjm-47-6-541
  9. J. Bacteriol. v.177 Pseudomonas aeruginosa sodA and sodB mutants defective in manganese- and iron-cofactored superoxide dismutase activity demonstrate the importance of the iron-cofactored form in aerobic metabolism Hassett, D. J.;H. P. Schweizer;D. E. Ohman https://doi.org/10.1128/jb.177.22.6330-6337.1995
  10. Mol. Plant-Microbe Interac. v.11 Entry of Xanthomonas campestris pv. campestris into the hydathodes of Arabidopsis thaliana leaves: A system for studying early infection events in bacterial pathogenesis Hugouvieux, V.;C. E. Barber;M. J. Daniels https://doi.org/10.1094/MPMI.1998.11.6.537
  11. J. Microbiol. Biotechnol. v.12 Identification of FM001 as plant growth-promoting substance from Acremonium strictum MJN1 culture Jung, J. H.;D. H. Shin;W. C. Bae;S. K. Hong;J. W. Suh;S. H. Koo;B. C. Jeong
  12. Can. J. Microbiol. v.36 Glucose oxidase as the antifungal principle of talaron from Talaromyces flavus Kim, K. K.;D. P. Fravel;G. C. Papavizas https://doi.org/10.1139/m90-131
  13. Gene v.239 Transcriptional regulation by iron of genes encoding iron-and manganese-superoxide dismutases from Pseudomonas putida Kim, Y. C.;C. D. Miller;A. J. Anderson https://doi.org/10.1016/S0378-1119(99)00369-8
  14. Appl. Environ. Microbiol. v.66 Superoxide dismutase activity in Pseudomonas putida affects utilization of suars and growth on root surfaces Kim, Y. C.;C. D. Miller;A. J. Anderson https://doi.org/10.1128/AEM.66.4.1460-1467.2000
  15. J. Microbiol. Biotechnol. v.12 A plant growthpromoting Pseudomonas fluorescens GL20: Mechanism for disease suppression, outer membrane receptors for ferric siderophore, and genetic improvement for increased biocontrol efficacy Lim, H. S.;J. M. Lee;S. D. Kim
  16. Can. J. Microbiol. v.47 Competitiveness in root colonization by Pseudomonas putida requires the rpoS gene Miller, C. D.;Y. C. Kim;A. J. Anderson https://doi.org/10.1139/cjm-47-1-41
  17. Mol. Plant-Microbe Interac. v.14 Essential role of superoxide dismutase on the pathogenicity of Erwinia chrysanthemi strain 3937 Santos, R. C.;T. Franza;M. L. Laporte;C. Sauvage;D. Touati;D. Experts https://doi.org/10.1094/MPMI.2001.14.6.758
  18. Mol. Microbiol. v.38 Critical protective role of bacterial superoxide dismutase in Rhizobium-legume symbiosis Santos, R. C.;D. Herouart;A. Puppo;D. Touati https://doi.org/10.1046/j.1365-2958.2000.02178.x
  19. Appl. Environ. Microbiol. v.54 Fusarium wilt suppression and agglutinability of Pseudomonas putida Tari, P. H.;A. J. Anderson
  20. Plant Soil v.140 Influence of root colonizing pseudomonads on defense mechanisms of bean Zdor, R.;A. J. Anderson https://doi.org/10.1007/BF00012811