DOI QR코드

DOI QR Code

Hydrological Analysis in Soyanggang-dam Watershed Using SLURP Model

SLURP 모형을 이용한 유출수문분석 - 소양강댐 유역을 대상으로 -

  • 임혁진 (건국대학교 대학원 지역건설환경공학과) ;
  • 권형중 (건국대학교 대학원 지역건설환경공학) ;
  • 장철희 (한국건설기술연구원 수자원환경연구) ;
  • 김성준 (건국대학교 생명환경과학대학 사회환경시스템공학전공)
  • Published : 2004.08.01

Abstract

The objective of this study is to test the applicability of SLURP (Semi-distributed Land Use-based Runoff Process) on Soyanggang-dam watershed. SLURP model is a conceptual semi-distributed form model that can be used to examine irrigation plan and the effects of proposed changes in water management within a basin or to see what effects external factors such as climate change or changing land cover might have on various water users. Topographical parameters were derived from DEM using TOPAZ and SLURPAZ. Monthly NDVIs were calculated from multi-temporal NOAA/AVHRR images during four years (1998 ∼ 2001). Weather elements (dew-point temperature, solar radiation, maximum/minimum temperature and relative humidify) were obtained from five meteorological stations within and near the study area. To simulate daily hydrograph during 1998 ∼ 2001, the model parameters of each land cover class were optimized by sensitivity analysis and SCE-UA method. Test result of SLURP was summarized by various statistics method (WMO volume error, Nash-Sutcliffe efficiency, mean error and coefficient of variation).

본 연구는 개념적 준분포형 모형인 SLURP 모형의 소양강댐유역의 적용가능성에 대해 다루었다. SLURP모형은 강우의 시공간적 변화를 반영하여 강우-유출을 해석하여 관개계획 및 수자원 관리 효과를 판단할 수 있는 준분포형 모형이다. DEM으로부터 지형분석프로그램인 TOPAZ/SLURPAZ와 연계하여 빠르고 쉽게 지형매개변수와 지형자료를 획득할 수 있다. NOAA/AVHRR 위성영상을 이용하여 월별 NDVI를 산출하였으며, 대상유역 주변의 5개의 기상 관측소를 통해 일별 수문기상자료(이슬점, 일사량, 최대ㆍ최소 대기 기온, 상대습도 등)을 얻었다. DEM NDVI, 수문기상자료를 이용하여 1998년부터 2001년까지 4 개년도의 일별유출량을 모의하였다. 매개변수 최적화를 위하여 민감도 분석 및 SCE-UA 방법을 사용하였으며 대상기간의 Nash-Sutcliffe의 모형효율과 WMO 통계량을 통해 소양강댐 유역의 SLURP모형의 적용성을 검증하였다.

Keywords

References

  1. 김상현, 손광익, 한건연 (1996). 'Tile drain의 영향과 GIS를 연계한 농경지 유역에 대학 수문학적 모의', 한국수자원학회지, 한국수자원학회, Vol. 29(6), pp. 203-215
  2. 김성태 (2003). SLURP를 이용한 하천 유출량 모의. 석사학위논문, 인하대학교
  3. 고덕구 (1989). 소유역 장기유출 예측을 위한 모의발생 수문모형의 개발. 박사학위논문, 서울대학교
  4. 국립방재연구소 (2003). 위성자료를 이용한 가뭄예상지도의 개발. 행정자치부, pp. 28-36
  5. 권순국, 고덕구 (1987). '산지유역에 대한 USDHAL-74 유역수문모형의 장기유출 해석 적용', 한국농공학회지, 한국농공학회, Vol. 29(2), pp. 53-63
  6. Abbott, I.B., Bathurst, J.C., Cunge, J.A., O'Connell, P.E., and Rasmussen, J. (1986). 'An introduction to the European Hydrological System - Systeme Hydrologique Europeen, (SHE), 1: History and philosophy of a physically-based distributed modelling system.' Journal of Hydrology, Vol. 87, pp. 45-59 https://doi.org/10.1016/0022-1694(86)90114-9
  7. Duan, Q., Sorooshian, S.S., and Gupta, V.K. (1994). 'Optimal use of the SCE-UA global optimization method for calibrating watershed models.' Journal of Hydrology, Vol. 158, pp. 265-284 https://doi.org/10.1016/0022-1694(94)90057-4
  8. Garbrecht, J., and Campbell, J. (1997). TOPAZ version 1.20: An automated digital landscape analysis tool for topographic evaluation, drainage identification, watershed segmentation and subcatchment parameterization. In: TOPAZ User Manual. Rep.# GRL 97-4. Grazinglands Research Laboratory, USDA, Agricultural research Service, El Reno, Oklahoma
  9. Garbrecht, J., and Martz, L.W. (1993). 'Network and subwatershed parameters extracted from digital elevation models: the Bill's Creek experience.' Water Resources Research, Vol. 29, pp. 909-916 https://doi.org/10.1111/j.1752-1688.1993.tb03251.x
  10. Institute of Hydrology. (1995). Assessment of global water resources, preliminary report, ODA Report 95(2), Report to the Overseas Development Administration
  11. Kim, S.J., Chae, H.S., Yoo, C.S., Shin, S.C. (2003). 'Stream discharge Prediction via a grid-based soil water routing with paddy fields.' Journal American Water Resources Association, Vol. 39(5), pp. 1143-1155 https://doi.org/10.1111/j.1752-1688.2003.tb03698.x
  12. Kite, G.W. (1998). 'Land surface parameterizations of GCMs and macroscale hydrological models.' Journal American Water Resources Association, Vol. 34(6), pp. 1247-1254 https://doi.org/10.1111/j.1752-1688.1998.tb05428.x
  13. Kite, G.W. (2002). Manual for the SLURP hydrological model Version 12.2. Hydrologic-Solutions
  14. Krysanova, V., and Becker, A. (1996). Integrated Modelling of hydrology and water quality in mesoscale watersheds. Proc. Third int. Conf. on Integrating GIS and Environmental Modeling, Santa Fe, New. Mexico, pp. 21-25
  15. Kouwen, N., Seglenieks, F., and Soulis, E.D. (1995). The use of distributed rainfall data and distributed hydrologic models for the estimation of peak flows for the Columbia River Basin. Progress Report 2, Waterloo Research Institute, Waterloo
  16. Lacroix, M.P., Martz, L.W., Kite, G.W., and Garbrecht, J. (2002). 'Using digital terrain analysis modeling techniques for the parametrization of hydrologic model,' Journal of Hydrology, Vol. 217, pp. 127-136 https://doi.org/10.1016/S1364-8152(01)00042-1
  17. Martz, L.W., and Garbrecht, J. (1992). 'Numerical definition of drainage network and subcatch elevation models.' Computers & Geosciences, Vol. 18, pp. 747-761 https://doi.org/10.1016/0098-3004(92)90007-E
  18. Lacroix, M.P., Martz, L.W., Kite, G.W., and Gabrecht, J. (2002). 'Using digital terrain analysis modeling techniques for the parameterization of a hydrologic model'. Environmental Modelling & Software, Vol. 17, pp. 127-136 https://doi.org/10.1016/S1364-8152(01)00042-1
  19. Nash, J.E., and Sutcliffe, J.V. (1970). 'River flow forecasting through conceptual models; Part 1 - A discussion of principles.' Journal of Hydrology, Vol. 10(3), pp. 282-290 https://doi.org/10.1016/0022-1694(70)90255-6
  20. O'Callaghan, E.M., and Mark. (1984). 'The extraction of drainage networks from digital elevation data'. Computer Vision Graphics and Image Processing, Vol. 28, pp. 323-344 https://doi.org/10.1016/S0734-189X(84)80011-0
  21. Rango, A., and Martinec, J. (1995). 'Revisiting the degree-day methods for snowmelt condition.' Wat.Res.Bull., Vol. 31(4), pp. 657-669 https://doi.org/10.1111/j.1752-1688.1995.tb03392.x
  22. Sandra, L. and Woo, M.K. (2003). 'Application of hydrological models with increasing complexity to subarctic catchments.' Journal of Hydrology, Vol. 270, pp145-157 https://doi.org/10.1016/S0022-1694(02)00291-3