DOI QR코드

DOI QR Code

Neuro-Fuzzy Model based Electrical Load Forecasting System: Hourly, Daily, and Weekly Forecasting

뉴로-퍼지 모델 기반 전력 수요 예측 시스템: 시간, 일간, 주간 단위 예측

  • Published : 2004.08.01

Abstract

This paper proposes a systematic method to develop short-term electrical load forecasting systems using neuro-fuzzy models. The proposed system predicts the electrical loads with the lead times of 1 hour, 24 hour, and 168 hour. To do so, the load forecasting system first builds an initial structure off-line for each hour of four day types and then stores the resultant initial structures in the initial structure bank. 96 initial structures are constructed for each prediction lead time. Whenever a prediction needs to be made, the proposed system initializes the neuro-fuzzy model with the appropriate initial structure stored and trains the initialized prediction modell. To improve the performance of the prediction system in terms of accuracy and reliability at the same time, the prediction model employs only two inputs. It makes possible to interpret the fuzzy rules to be learned. In order to demonstrate the viability of the proposed method, we develop a load forecasting system by using the real load data collected during 1996 and 1997 at KEPCO. Simulation results reveal that the prediction system developed in this paper can achieve a remarkable improvement on both accuracy and reliability

본 논문은 뉴로-퍼지 모델의 구조 학습을 이용하여 단기 전력 수요 예측시스템을 개발하기 위한 체계적인 방법을 제안한다. 제안된 단기 수요 예측시스템은 1시간, 24시간, 168시간의 예측 리드 타임을 갖고 예측을 수행하기 위해서 요일 유형과 시간 별로 총 96개의 초기 구조를 미리 생성하고, 이를 초기 구조 뱅크에 저장한다. 예측이 수행되는 시점에 해당하는 초기구조를 선택하여 뉴로-퍼지 모델을 초기화하고, 학습하고, 예측을 수행한다. 제안된 예측시스템은 단지 2개의 입력 변수만을 이용하기 때문에 간단한 모델 구조를 가질 뿐 아니라 학습된 퍼지 규칙을 해석하는 것이 매우 용이하다는 장점을 갖는다. 제안된 방법의 실효성을 검증하기 위해 1996년과 1997년의 한극전력의 실제 전력 수요 데이터를 이용하여 1시간, 24시간, 168시간 앞의 전력 수요를 예측하는 모의 실험을 수행한다. 실험 결과 제안된 방법은 단지 2개의 입력 변수를 사용함에도 불구하고, 기존의 예측 방법과 비교하여 예측의 정확도와 신뢰도 측면에서 우수한 성능을 얻는다.

Keywords

References

  1. G. Gross, F. D. Galiana, "Short-Term Load Forecasting," Proceedings of IEEE, Vol.75, No.12, pp. 1558-1573, Dec. 1987. https://doi.org/10.1109/PROC.1987.13927
  2. 박영진, 심현정, 왕보현, "뉴로-퍼지 모델을 이용한 단기 전력 수요 예측시스템," 대한전기학회 논문집, pp. 107-117, 2000.
  3. M. Sugeno and T. Yasukawa, "A fuzzy logic based approach to qualitative modeling," IEEE Trans. Fuzzy Systems, vol. 1, no. 1, pp. 7-31, Feb. 1993. https://doi.org/10.1109/TFUZZ.1993.390281
  4. M. Kubat, "Decision Trees can Initialize Radial Basis Function Networks," IEEE Trans. Neural Networks, Vol. 9, No. 5, pp. 813-821, Sept. 1998. https://doi.org/10.1109/72.712154
  5. M. Sugeno and T. Yasukawa, "A Fuzzy Logic Based Approach to Qualitative Modeling," IEEE Trans. Fuzzy Systems, Vol. 1, No. 1, pp. 7-31, Feb. 1993. https://doi.org/10.1109/TFUZZ.1993.390281
  6. L. Wang, R. Langari, and J. Yen, "Principal Components, B-splines, and Fuzzy System Reduction," in Proc. Fuzzy Logic for the Applications to Complex Systems, W. Chiang and J. Lee, Ed. World Scientific, 1995.
  7. D. C. Park, M. El-Sharkawi, R. Marks, A. Atlas, and M. Damborg, "Electrical Load Forecasting Using an Artificial Neural Network," IEEE Trans. on Power Systems, Vol. 6, No. 2, pp. 442-449, May 1991. https://doi.org/10.1109/59.76685
  8. A. G. Ivakhnenko, 갥olynomial Theory of Complex Systems," IEEE Trans. Syst., Man, Cyberm., Vol. SMC-12, pp. 364-378, 1971. https://doi.org/10.1109/TSMC.1971.4308320
  9. S. Farlow, ed., Self Organizing Methods in Modeling : GMDH-Type Algorithm, Marcel Dekker, Inc., New York, 1984.

Cited by

  1. Development of Daily Peak Power Demand Forecasting Algorithm using ELM vol.62, pp.4, 2013, https://doi.org/10.5370/KIEEP.2013.62.4.169
  2. Development of Daily Peak Power Demand Forecasting Algorithm with Hybrid Type composed of AR and Neuro-Fuzzy Model vol.63, pp.3, 2014, https://doi.org/10.5370/KIEEP.2014.63.3.189
  3. Development of Daily Peak Power Demand Forecasting Algorithm Considering of Characteristics of Day of Week vol.63, pp.4, 2014, https://doi.org/10.5370/KIEEP.2014.63.4.307
  4. Development of Peak Power Demand Forecasting Model for Special-Day using ELM vol.64, pp.2, 2015, https://doi.org/10.5370/KIEEP.2015.64.2.074
  5. The Prediction and Analysis of the Power Energy Time Series by Using the Elman Recurrent Neural Network vol.41, pp.1, 2018, https://doi.org/10.11627/jkise.2018.41.1.084