Analysis of fatigue crack growth behavior in composite-repaired aluminum place

복합재 패치 보강 평판의 균열선단 진전거동 해석

  • Published : 2004.08.01

Abstract

An analytical study was conducted to characterize the fatigue crack growth behavior of pre-cracked aluminum plates repaired with asymmetric bonded composite patch. For single-sided repairs, due to the asymmetry and the presence of out-of$.$plane bending, crack front shape would become skewed curvilinear started from a uniform through-crack profile, as observed from Previous studies. Therefore, for the accurate investigation of fatigue behavior, it is necessary to predict the actual crack front evolution and take it into consideration in the analysis. In this study, the fatigue analysis of single-sided repairs considering crack front shape development was conducted by implementing three-dimensional successive finite element method coupled with linear elastic fracture mechanics (LEFM) concept, which enables the growing crack front to be directly traced and modeled in a step by step way. Through conducting present analysis technique, crack path of the patched plate as well as the fatigue life was evaluated with sufficient accuracy. The analytical predictions of both the crack front shape evolution and the fatigue life were in good agreement with the experimental observations.

본 논문에서는 한 쪽 면만 복합재 패치로 보강한 알루미늄 균열평판의 피로균열 진전거동을 해석적인 방법으로 고찰하였다. 한쪽 면 보강 시, 균열선단은 비대칭성과 면 외 굽힘의 효과로 인하여 초기의 직선형태에서 경사곡선형태로 진전한다는 사실을 이전의 연구견과에서 확인할 수 있다. 따라서 정확한 피로거동을 고찰하기 위하여는 이와 같은 균열선단의 변화과정을 예측하고, 이론 해석에 반영하는 것이 필수적이라 하겠다. 본 연구에서는 균열선단 전개형상을 고려한 한쪽 면 보강시의 피로해석을 수행하기 위하여 선형탄성 파괴역학개념을 적용한 3차원 순차적 유한요소 해석기법을 적용하였는데, 이를 통하여 진전하는 균열선단 형상을 단계적, 반복적으로 추적하고 해석모델에 반영하였다. 이와 같은 해석기법을 적용함으로써 패치보강 평판의 피로수명은 물론 균열선단 진전과정도 정확히 예측할 수 있었다. 해석으로 얻어진 균열선단 진전거동 및 피로수명은 상응하는 실험결과와 잘 일치함을 확인하였다.

Keywords

References

  1. Bonded Repair of Aircraft Structures A.A. Baker;R.jones
  2. Fatigue Fracture in Engineering Material Structures v.16 no.7 Repair efficiency in Fatigue-cracked aluminum components reinforced with boron/epoxy patches A.A. Baker https://doi.org/10.1111/j.1460-2695.1993.tb00117.x
  3. Proceeding of 2nd Pacific International Conference on Aerospace Science and Technology v.1 Sanderson S and Wilson ES, Design validation for a bonded composite repaor to the F-III lower wing skin L.R.F. Rose;Callinan RJ;Baker AA
  4. AIAA Journal v.17 no.9 adhesively bonded laminated structures M.M. Ratwani;Cracked https://doi.org/10.2514/3.61263
  5. Composite Structures v.1 Neutral axis effects due to crack patching R. Jones https://doi.org/10.1016/0263-8223(83)90010-7
  6. Proceedings of FAA/NASA International Symposium on Advanced Structural Integrity Methods for Airframe Durability and Damage Tolerance, NASA Conference Publication v.3274 Bending effects of unsymmetric adhesively bonded composite repairs on cracked aluminum panels C. Arendt;C.T. Sun
  7. Engineering Fracture Mechanics v.62 Modeling of a patch repair to thin cracked sheet Turaga V.R.S. Umamaheswar;Ripudaman Singh https://doi.org/10.1016/S0013-7944(98)00088-5
  8. AIAA Journal v.34 Analysis of cracked plates repaired with bonded composite patches C.T. Sun;J. Klug;C. Arendt https://doi.org/10.2514/3.13073
  9. Int. J. Solids Structures v.35 no.14 Analysis of out-plane bending in one-sided bonded repair C.T. Wang;L.R.F. Rose;R. Callinan https://doi.org/10.1016/S0020-7683(97)00129-7
  10. Composite Structures v.57 Fatigue crack growth behavior of cracked aluminum plate repaired with composite patch Dae-Cheol Seo;Jung-Ju Lee https://doi.org/10.1016/S0263-8223(02)00095-8