Improvement of the Resistance to Cavitation Erosion by the Formation of $\beta$' Martensite in Flame-Quenched Cu-9Al-4.5Ni-4.5Fe Alloys

화염급냉 표면처리된 Cu-9Al-4.5Ni-4.5Fe 합금의 $\beta$' 마르텐사이트 형성에 의한 케비테이션 침식 저항성 향상에 관한 연구

  • 홍성모 (충남대학교 금속공학과) ;
  • 이민구 (한국원자력연구소 원자력재료기술개발부) ;
  • 김광호 (충남대학교 재료공학과) ;
  • 김경호 (한국원자력연구소 원자력재료기술개발부) ;
  • 김흥회 (한국원자력연구소 원자력재료기술개발부) ;
  • 홍순익 (충남대학교 금속공학과)
  • Published : 2004.08.01

Abstract

Cavitation erosion properties of the Cu-9Al-4.5Ni-4.5Fe alloys (Al-bronze) surface-modified by flame quenching process have been investigated. After flame quenching at above $T_{\beta}$, the surfaces of Al-bronze with $\alpha$ + $\textsc{k}$ structure have been changed into the $\alpha$ + $\beta$' martensite phases by the eutectoid reaction of $\alpha$ + $\textsc{k}$\longrightarrow$\beta$ followed by the martensite transformation of $\beta$\longrightarrow$\beta$'. As a result of cavitation test, the measured incubation time and erosion rate of the $\alpha$ + $\beta$' alloy was 1.2 times higher and 1.5 times lower, respectively, compared to those of the conventional $\alpha$ + $\textsc{k}$ alloys, showing a remarkable increase of cavitation resistance with the formation of $\beta$' martensite. This is attributed to a preferential erosion of the $\textsc{k}$ precipitates that show the lowest resistance among the $\alpha$, $\textsc{k}$, $\beta$' phases under cavitation loading.ases under cavitation loading.

Keywords

References

  1. F. Hasan, A. Jahanafrooz, C. W. Lorimer, N. Ridley, Met. Trans., 13A (1982) 1337
  2. S. S. Cho, J. H. Hong, J. Kor. Inst. Met. Mater., 13 (1975) 397
  3. Yuanyuan Li, Tungwai Leo Ngai, Wei Xia, Wear., 197 (1996) 130 https://doi.org/10.1016/0043-1648(95)06890-2
  4. G. Benkisser, G. Winkel, M. Pohl, L. Tikana, Prakt. Metallogr., 36 (1999) 11
  5. M. Kaplan, A. K. Yildiz, Mater. Lett., 57 (2003) 4402 https://doi.org/10.1016/S0167-577X(03)00332-X
  6. T. Kawazoe, A. Ura, M. Saito, S. Nishikido, Surf Eng., 13 (1997) 37 https://doi.org/10.1179/sur.1997.13.1.37
  7. H. M. Shalaby, A. Al-Hashem, H. AL-Mazeedi, A. Abdullah, Brit. Corr. J., 30 (1995) 63 https://doi.org/10.1179/000705995798114221
  8. A. Al-Hashem, W. Riad, Mater. Charact., 48 (2002) 37 https://doi.org/10.1016/S1044-5803(02)00196-1
  9. C. H. Tang, F. T. Cheng, H. C. Man, Surf. Coat. Tech., 182 (2004) 300 https://doi.org/10.1016/j.surfcoat.2003.08.048
  10. C. H. Tang, F. T. Cheng, H. C. Man, Mater. Sci Eng., (A) 373 (2004) 195 https://doi.org/10.1016/j.msea.2004.01.016
  11. J. L. Heuze, A. Karimi, Proceedings Cavitation 91 Symposium, The 1st ASME-JSME Fluids Engineeiing Conference, Portland Oregon, June 23-27, 1991, 116 (1991) 113
  12. Xiao-Feng Zhang, Liang Fang, Wear., 253 (2002) 1105 https://doi.org/10.1016/S0043-1648(02)00168-0
  13. M. Cook, W. P. Fentiman, E. Davis, J. Inst. Met., 80 (1952) 419
  14. P. Brezina, Int. Met. Rev., 27 (1982) 77 https://doi.org/10.1179/095066082790324379
  15. M. K. Lee, S. M. Hong, G. H. Kim, K. H. Kim, W. W. Kim, Met. Mater. Int. (in press)
  16. Annul Book of ASTM Standards G32-92, Standard Test Method for Cavitation Erosion Using Vibratory Apparatus, (1992) 110