Neuroprotective Effect of Wogonin: Potential Roles of Inflammatory Cytokines

  • Piao, Hua-Zi (Department of Pharmacology, College of Medicine, Ewha Institute of Neuroscience, Ewha Womens University, Department of pharmacology, College of Medicine, Yanbian University) ;
  • Jin, Shun-Ai (Yan-Ji Hospital) ;
  • Chun, Hyang-Sook (Korea Food Research Institute) ;
  • Lee, Jae-Chul (Department of Pharmacology, College of Medicine, Ewha Institute of Neuroscience, Ewha Womens University) ;
  • Kim, Won-Ki (Department of Pharmacology, College of Medicine, Ewha Institute of Neuroscience, Ewha Womens University)
  • Published : 2004.09.01

Abstract

Wogonin (5,7-dihydroxy-8-methoxyflavone), an active component originated from the root of Scutellaria baicalensis Georgi, has been reported to possess antioxidant and anti-inflamma-tory properties. In this study, we investigated the neuroprotective effect of wogonin in a focal cerebral ischemia rat model. Wogonin markedly reduced the infarct volume after 2 h middle cerebral artery occlusion followed by 22 h reperfusion. Wogonin decreased the production of nitric oxide and inflammatory cytokines such as TNF-$\alpha$ and IL-6 in lipopolisaccharide-stimu-lated microglial cells. While wogonin reduced the activity of NF-$textsc{k}$B, it did not change the activ-ity of mitogen-activated protein kinases family members, p38, ERK and JNK. The lipopolisaccharide-stimulated production of NO and cytokines was significantly blocked by vari-ous kinds of NF-$textsc{k}$B inhibitors such as N-acetyl cysteine, pyrrolidinedithiocarbamate and MG-132. The data may indicate that wogonin has neuroprotective effect by preventing the over-activation of microglial cells, possibly by inactivating NF-$textsc{k}$B signaling pathway

Keywords

References

  1. Chang, Y. L., Shen, J. J., Wung, B. S., Cheng, J. J., and Wang, D. L., Chinese herbal remedy wogonin inhibits monocyte chemotactic protein-1 gene expression in human endothelial cells. Mol. Pharmacol., 65, 507-513 (2001)
  2. Chen, Y. C., Shen, S. C., Chen, L. G., Lee, T. J., and Yang L. L., Wogonin, baicalin, and baicalein inhibition of inducible nitric oxide synthase and cyclooxygenase-2 gene expressions induced by nitric oxide synthase inhibitors and lipopolysaccharide. Biachem Pharmacol., 61, 1417-1427 (2001) https://doi.org/10.1016/S0006-2952(01)00594-9
  3. Choi, J. J., Oh, Y. K., Kim, H. S., Kim, H. C., Ko, K. H., and Kim, W. K., Mimosine prevents the death of glucose-deprived immunostimulated astrocytes by scavenging peroxynitrite. Glia., 39, 37-46 (2002) https://doi.org/10.1002/glia.10084
  4. Drapier, J. C. and Hibbs, J. B. Jr., Differentiation of murine macrophages to express nonspecific cytotoxicity for tumor cells results in L-arginine-dependent inhibition of mitochondrial iron-sulfur enzymes in the macrophage effector cells. J. Immunol., 140, 2829-2838 (1988)
  5. Kim, W. G., Mohney, R. P., Wilson, B., Jeohn, G. H., Liu, B., and Hong, J. S., Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J. Neurosci., 20, 6309-6316 (2000)
  6. Kim, W.-K., Chung, J.-H., Kim, H.-C., and Ko, K. H., Nitric oxideenhanced excitotoxicity-independent apoptosis of glucosedeprived neurons. Neurasci. Res., 33, 281-289 (1999a) https://doi.org/10.1016/S0168-0102(99)00018-8
  7. Kim, W.-K. and Ko, K. H., Potentiation of N-methyl-D-aspartatemediated neurotoxicity by immunostimulated murine microglia. J. Neurasci Res., 54,17-26 (1998) https://doi.org/10.1002/(SICI)1097-4547(19981001)54:1<17::AID-JNR3>3.0.CO;2-K
  8. Kim, W.-K., Lee, J.-C., Cho, G.-S., Kim, H. J., Choi, and K., Choi, C., Time-dependent modulation of cerebral ischemic injury after lipopolysaccharide microinjection into rat corpus callosum. Glia, S2, 61 (2003)
  9. Kim, W.-K., Seo, D. O., Choi, J.-J., and Ko, K.-H., Immunostimulated glial cells potentiate glucose deprivation-induced death of cultured rat cerebellar granule cells. J. Neurotrauma., 16, 415-424 (1999b) https://doi.org/10.1089/neu.1999.16.415
  10. Kumar, S. M., Porterfield, D. M., Muller, K. J., Smith, P. J., and Sahley, C. L., Nerve injury induces a rapid efflux of nitric oxide (NO) detected with a novel NO microsensor. J. Neurosci., 21, 215-220 (2001)
  11. Kumar, S. M., Porterfield, D. M., Muller, K. J., Smith, P. J., and Sahley, C. L., Nerve injury induces a rapid efflux of nitric oxide (NO) detected with a novel NO microsensor. J. Neurosci., 21, 215-220 (2001)
  12. Lauzurica, P, Martinez-Martinez, S., Marazuela, M., Gomez, del Arco P., Martinez, C., Sanchez-Madrid, F., and Redondo, J. M., Pyrrolidine dithiocarbamate protects mice from lethal shock induced by LPS or TNF-alpha. Eur. J. Immunol., 29, 1890-900 (1999) https://doi.org/10.1002/(SICI)1521-4141(199906)29:06<1890::AID-IMMU1890>3.0.CO;2-F
  13. Lee, J.-C., Cho, G.-S., Kim, H. J., and Kim, W.-K.., Augmented cerebral ischemic injury by activated macrophages/microglia: Role of nitric oxide. Glia, S2, 61 (2003)
  14. Lieb, K., Engels, S., and Fiebich, B. L., Inhibition of LPS-induced iNOS and NO synthesis in primary rat microglial cells. Neurochem Int., 42, 131-137 (2003) https://doi.org/10.1016/S0197-0186(02)00076-1
  15. Liu, B., Gao, H. M., Wang, J. Y., Jeohn, G. H., Cooper, C. L., and Hong, J. S., Role of nitric oxide in inflammation-mediated neurodegeneration. Ann. N. Y. Acad. Sci., 962, 318-331 (2002) https://doi.org/10.1111/j.1749-6632.2002.tb04077.x
  16. Liu, B. and Hong, J. S., Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacol. Exp. Ther., 304,1-7 (2003) https://doi.org/10.1124/jpet.102.035048
  17. Ma, W., Lim, W., Gee, K., Aucoin, S., Nandan, D., Kozlowski, M., Diaz-Mitoma, F., and Kumar, A., The p38 mitogen-activated kinase pathway regulates the human interleukin-10 promoter via the activation of Sp1 transcription factor in lipopolysaccharide-stimulated human macrophages. J. Biol. Chem., 276,13664-13674 (2001) https://doi.org/10.1074/jbc.M011157200
  18. Minami, M., Kuraishi, Y., Yabuuchi, K., Yamazaki, A., and Satoh, M., Induction of interleukine-1beta mRNA in rat brain after transient forebrain ischemia. J. Neurochem., 58, 390-392 (1992) https://doi.org/10.1111/j.1471-4159.1992.tb09324.x
  19. Nakamura, N., Hayasaka, S., Zhang, X. Y., Nagaki, Y., Matsumoto, M., Hayasaka, Y., and Terasawa, K., Effects of baicalin, baicalein, and wogonin on interleukin-6 and interleukin-8 expression, and nuclear factor-kappab binding activities induced by interleukin-1beta in human retinal pigment epithelial cell line. Exp. Eye Res., 77, 195-202 (2003) https://doi.org/10.1016/S0014-4835(03)00116-7
  20. Park, B. K., Heo, M. Y., Park, H., and Kim, H. P., Inhibition of TPA-induced cyclooxygenase-2 expression and skin inflammation in mice by wogonin, a plant flavone from Scutellaria radix. Eur. J. Pharmacol., 425, 153-157 (2001) https://doi.org/10.1016/S0014-2999(01)01187-6
  21. Polazzi, E., Gianni, T., and Contestabile, A., Microglial cells protect cerebellar granule neurons from apoptosis: evidence for reciprocal signaling. Glia, 36, 271-280 (2001) https://doi.org/10.1002/glia.1115
  22. Suk, K., Lee, H., Kang, S. S., Cho, G. J., and Choi, W. S., Flavonoid baicalein attenuates activation-induced cell death of brain microglia. J. Pharmacol. Exp. Ther., 305, 638-645 (2003) https://doi.org/10.1124/jpet.102.047373
  23. Tsubuki, S., Saito, Y., Tomioka, M., Ito, H., and Kawashima, S., Differential inhibition of calpain and proteasome activities by peptidyl aldehydes of di-Ieucine and tri-Ieucine. J. Biochem., 119, 572-576 (1996) https://doi.org/10.1093/oxfordjournals.jbchem.a021280
  24. van der Bruggen, T., Nijenhuis, S., van Raaij, E., Verhoef, J., and van Asbeck. B. S., Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the raf-1/MEK1-MEK2/ERK1-ERK2 pathway. Infect Immun., 67, 3824-3829 (1999)
  25. Wakabayashi, I. and Yasui, K., Wogonin inhibits inducible prostaglandin E (2) production in macrophages. Eur. J. Pharmacol., 406, 477-481 (2000) https://doi.org/10.1016/S0014-2999(00)00695-6
  26. Wink, D. A., Kasprzak, K. S., Maragos, C. M., Elespuru, R. K., Misra, M., Dunams, T. M., Cebula, T. A., Koch, W. H., Andrews, A. W, and Allen, J. S., et al., DNA deaminating ability and genotoxicity of nitric oxide and its progenitors. Science, 254, 1001-1003 (1991) https://doi.org/10.1126/science.1948068
  27. Yang, Y., Li, Q., Wang, C. X., Jeerakathil, T., and Shuaib, A., Dose-dependent neuroprotection with tiagabine in a focal cerebral ischemia model in rat. Neuroreport, 11, 2307-2311 (2000) https://doi.org/10.1097/00001756-200007140-00048