DOI QR코드

DOI QR Code

Spatial Genetic Structure and Genetic Diversity of a Rare Endemic Juniperus chinensis var. sargentii in Mt. Halla, Korea

희귀식물인 눈향나무(Juniperus chinensis var. sargentii)의 공간분포에 따른 유전구조 및 유전적 다양성

  • Choi, Hyung-Soon (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Hong, Kyung-Nak (Department of Forest Genetic Resources, Korea Forest Research Institute) ;
  • Chung, Jae-Min (Korea National Arboretum) ;
  • Kim, Won-Woo (Department of Forest Genetic Resources, Korea Forest Research Institute)
  • Published : 2004.10.01

Abstract

Juniperus chinensis var. sargentii Henry is a short and creeping evergreen shrub which reaches about 50㎝ in height and occurs in the northeast Asia and in high mountains over the South Korea. Its distribution is restricted, and the number of individuals are gradually decreasing. This study was conducted to estimate spatial pattern, genetic diversity and spatial genetic structure of J. chinensis var. sargentii. A total of 131 clumps were studied in the study area (40m × 60m). The spatial pattern of this population was random (Aggregation index R=1.031). In spite of the small number and the limited distribution, the level of genetic diversity (Shannon's index 1=0.463) was relatively high as compared with those of other plant species with similar ecological characteristics. ISSR genotypes of all individuals were investigated to find the genetic relationship of clumps and genets. Fifteen clumps were composed to be clones, and a total of 116 unique genotypes were composed by separate genets. Spatial autocorrelation analysis using Tanimoto distance showed that the genetic patch was established within 8m. The effect of clonal reproduction on genetic structure was almost nothing.

눈향나무(Juniperus chinensis var. sargentii Henry)는 사할린, 일본 등의 동북아시아와 한반도에서는 전국의 고산지대에서 자라는 상록성 소관목으로서 희귀 및 멸종 위기 식물(산림청)로 지정되어 있다. 본 연구에서는 한라산에 서식하는 눈향나무 집단의 분포형태 및 특성, 유전적 다양성과 공간적 유전구조를 파악하였다. 조사구(40m × 60m)에는 총 131개의 눈향나무 clump가 자생하고 있었으며 이들 전체 본수를 대상으로 군집지수를 계산한 바, 임의분포하고 있음을 확인하였다 모든 개체들에 대하여 ISSR 유전자형을 비교한 결과, 15개체는 클론으로, 나머지는 각기 서로 다른 genet으로 구성 되 어 있었다. 21개 의 ISSR 표지자를 바탕으로 계산한 Shannon의 다양성지수(I=0.463)는 적은 개체수와 제한적 분포에도 불구하고 유전적 다양성이 다른 수종에 비해 비교적 높은 편으로 나타났다. 공간적 자기상관 분석방법을 이용하여 공간적 유전구조를 파악한 결과, 조사지역내의 눈향나무 집단은 8m 이내에서 유전적으로 유사한 군락구조를 갖고 있는 것으로 나타났으며, 클론 번식이 공간적 유전 구조에 미치는 영향은 거의 없는 것으로 판단되었다.

Keywords

References

  1. 강범용, 홍경낙, 정재민, 홍용표. 2003. I-SSR 표지자를 이용한 치악산 복분자딸기(Rubus coreanus)의 공간분포에 따른 유전구조. 한국임학회지 92: 558-566
  2. 산림청. 1997. 희귀 및 멸종위기 식물도감. 생명의 나무. 서울. 21 p
  3. 이창복. 1989. 대한식물도감. 향문사. 서울 67 p
  4. 최태봉. 2001. 국내 상록성 참나무류의 유전적 구조 및 다양성과 붉가시나무 집단의 보전전략. 서울대학교 박사학위 논문. 189 p
  5. 최형순, 홍경낙, 정재민, 강범용, 김원우. 2004. 한라산 시로미 (Empetrum nigrum var. japonicum)의 유전적 다양성 및 공간적 유전구조. 한국임학회지 93: 175-180
  6. Chung, M.G. and B.K. Epperson. 1999. Spatial genetic structure of clonal and sexual reproduction of Adenophora grandiflora (Campanulaceae). Evolution 53: 1068-1078 https://doi.org/10.2307/2640812
  7. Chung, M.G. and B.K. Epperson. 2000. Clonal and spatial genetic structure in Eurya emarginata (Theaceae). Heredity 84: 170-177 https://doi.org/10.1046/j.1365-2540.2000.00644.x
  8. Clark, P.J. and F.C. Evans. 1954. Distance to nearest neighbor as a measure of spatial relationship in populations. Ecology 35: 445- 453 https://doi.org/10.2307/1931034
  9. Coates, D.J. 1998. Genetic diversity and population genetic structure in the rare chittering grass wattle Acacia anomala Court. Aust. J. Bot. 36: 22-27
  10. Degen, B., R. Petit and A. Kremer. 2001. SGS - Spatial Genetic Software: A computer program for analysis of spatial genetic and phenotypic structures of individuals and populations. J. Heredity 92: 447-448 https://doi.org/10.1093/jhered/92.5.447
  11. Epperson, B.K. 1992. Spatial structure of genetic variation within populations of forest trees. New Forests 6: 257-278 https://doi.org/10.1007/BF00120648
  12. Epperson, B.K. 1997. Gene dispersal and spatial genetic structure. Evolution 51: 672-681 https://doi.org/10.2307/2411144
  13. Godt, M.J. and J.L. Hamrick. 1998. Allozyme diversity in the endangered pitcher plant Sarracenia rubra spp. alalbamensis (Sarraceniaceae) and its close relative S. rubra. Am. J. Bot. 85: 802-810
  14. Hamrick, J.L., M.J. Godt and S.L. Sherman-Bryoles. 1992. Factors influencing levies of genetic diversity in woody plant species. New Forests 6: 95-124 https://doi.org/10.1007/BF00120641
  15. Heuertz. M.. X. Vekemans. J.F. Hausman. M. Palada and O.J. Hardy. 2003. Estimating seed vs. pollen dispersal from spatial genetic structure in the common ash. Mol. Ecol. 12: 24832495
  16. Hong, Y.P., K.J. Cho, K.N. Hong and E.M. Shin. 2001. Diversity of I-SSR variants in Ginkgo biloba L. planted in 6 regions of Korea. J. Korean For. Soc. 90: 169-175
  17. Hong, Y.P., K.J. Cho, Y.Y. Kim, E.M. Shin and S.K. Pyo. 2000. Diversity of I-SSR variants in the population of Torreya nucifera. J. Korean For. Soc. 89: 167-172
  18. Krebs, C.J. 1999. Ecological Methodology (2nd ed.). AddisonWelsey Educational. California. pp. 192-193
  19. Kreher, S.A., S.A. Fore and B.S. Collins. 2000. Genetic variation within and among patches of the clonal species, Vaccinium stamineum L. Mol. Ecol. 9: 1247-1252 https://doi.org/10.1046/j.1365-294x.2000.01002.x
  20. Legendre, P. 1993. Spatial autocorrelation: trouble or new paradigm? Ecology 74: 1659-1673
  21. Lewontin, R.C. 1972. The apportionment of human diversity. Evol. Biol. 6: 381-398
  22. Mayes, S.M., A. McGinley and C.R. Werth. 1998. Clonal population structure and genetic variation in sand-shinnery oak, Quercus havardii (Fagaceae). Am. J. Bot. 85: 1609-1617 https://doi.org/10.2307/2446489
  23. Milligan, B.G. 1992. Plant DNA isolation. In AR Hoelzel (ed.) Molecular Genetic Analysis of Populations: A Practical Approach. Oxford University. New York. pp. 65-66
  24. Reusch, B.H., T.W. Hurkiede, W.T. Starn and J.L. Olsen. 1999. Differentiating between clonal growth and limited gene flow using spatial autocorrelation of microsatellites. eredity 83: 120-126
  25. Torimaru, T., N. Tomaru, N. Nushimura and S. Yamamoto. 2003. Clonal diversity and genetic differentiation in Ilex leucoclada M. patches in an old-growth beech forest. Mol. Ecol. 12: 809-818
  26. Waller, D.M., D.M. O'Malley and S.C. Gawler. 1987. Genetic variation in the extreme endemic Pedicularis furbishiae (Scrophulariaceae). Conservation Biol. 1: 335-340 https://doi.org/10.1111/j.1523-1739.1987.tb00053.x
  27. Ueno, S., N. Tomaru, H. Yoshimaru, T. Tanabe and S. Yamamoto. 2000. Genetic structure of Camellia japonica L. in an old-growth evergreen forest, Tsushima, Japan. Mol. Ecol. 9: 647-656
  28. Yeh, F.C., R. Yang, T.B.J. Boyle, Z.H. Ye and J.X. Mao. 1997. POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre. University of Alberta. Canada

Cited by

  1. Genetic Diversity and Spatial Genetic Structure of Dwarf Stone Pine in Daecheongbong Area, Mt. Seorak vol.25, pp.4, 2012, https://doi.org/10.7732/kjpr.2012.25.4.407
  2. Genetic Diversity and Spatial Genetic Structure of Berchemia racemosa var. magna in Anmyeon Island vol.32, pp.1, 2014, https://doi.org/10.7235/hort.2014.13042