Dietary Intake of Various Lactic Acid Bacteria Suppresses Type 2 Helper T Cell Production in Antigen-Primed Mice Splenocyte

  • Lee, Hui-Young (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University) ;
  • Park, Jong-Hwan (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University) ;
  • Seok, Seung-Hyeok (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University) ;
  • Cho, Sun-A. (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University) ;
  • Baek, Min-Won (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University) ;
  • Kim, Dong-Jae (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University) ;
  • Lee, Yeon-Hee (Department of Biology, Seoul Womens University) ;
  • Park, Jae-Hak (Department of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University)
  • Published : 2004.02.01

Abstract

Lactic acid bacteria (LABs) have been proposed as a potential oral allergy-therapeutic means of modulating immune phenotype expression in vivo, via promoting or reducing cytokine production. This study investigated the ability of LABs to suppress allergic response via modulating cytokine production in mice splenocytes. BALB/c mice were intraperitoneally primed with ovalbumin together with alum adjuvant to invoke antigen-specific Th1/Th2 cytokine-secreting cell populations in splenocytes. Spleen cells from mice fed with Lactobacillus confusus PL9001 (KCCM-10245), L. fermentum PL9005 (KCCM-10250), L. plantarum PL9011 (KCCM-10358), and Bifidobacterium infantis PL9506 (KCCM-10406) suppressed the levels of Th2 cell cytokines such as IL-4 and IL-5 during antigen sensitization. In addition, all mice fed with LABs induced secretion of Th1 cell cytokines such as IL-2 in splenocytes. These results suggested that LABs are anti-allergic agents, in view of their Th1/anti-Th2 immunoregulation.

Keywords

References

  1. Bruselle, G., J. Kips, G. Joos, H. Bluethmann, and R. Pauwels. 1995. Allergen-induced airway inflammation and bronchial responsiveness in wild type and interleukin-4 deficient mice. Am. J. Respir. Cell. Mol. Biol. 12: 254-259
  2. Cross, M. L., L. M. Stevenson, and H. S. Gill. 2001. Anti-allergy properties of fermented foods: An important immunoregulatory mechanism of lactic acid bacteria. Int. Immunopharmacol. 1: 891-901
  3. Fiorentino, D. F., M. W. Bond, and T. R. Mosmann. 1989. Two types of mouse T helper cell. IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J. Exp. Med. 170: 2081-2095
  4. Hamelmann, E. and E. Gelfand. 1998. The role of cytokines in the development of allergen-induced airway hyperresponsiveness. A.C.I. International 10: 59-63
  5. Herz, U., R. Bunikowski, and H. Renz. 1998. Role of T cells in atopic dermatitis. Int. Arch. Allergy Immunol. 115: 179- 190
  6. Hogan, S., A. Koskinen, and P. Foster. 1997. Interleukin- 5 and eosinophils induce airway damage and bronchial hyperreactivity during allergic airway inflammation in BALB/c mice. Immunol. Cell. Biol. 75: 284-288
  7. Gill, H. S., K. J. Rutherfurd, J. Prasad, and P. K. Gopal. 2000. Enhancement of natural and acquired immunity by Lactobacillus rhamnosus (HN001), Lactobacillus acidophilus (HN017) and Bifidobacterium lactis (HN019). Br. J. Nutr. 83: 167-176
  8. Kato, I., K. Tanaka, and T. Yokokura. 1999. Lactic acid bacterium potently induces the production of interleukin-12 and interferon-g by mouse splenocytes. Int. J. Immunopharmacol. 21: 121-131
  9. Kim, J. Y., H. J. Woo, K. H. Kim, E. R. Kim, H. K. Jung, H. N. Juhn, and H. J. Lee. 2002. Antitumor activity of lactobacillus plantarum cytoplasm on teratocarcinomabearing mice. J. Microbiol. Biotechnol. 12: 998-1001
  10. Kips, J. C., G. G. Brusselle, G. F. Joos, R. A. Peleman, R. R. Devos, J. H. Tavernier, and R. A. Pauwels. 1995. Importance of interleukin-4 and interleukin-12 in allergen-induced airway changes in mice. Int. Arch. Allergy Immunol. 107: 115-118
  11. Macfarlane, G. T. and J. H. Cummings. 1999. Probiotic and prebiotics: Can regulate the activities of intestinal bacteria benefit health? Br. Med. J. 318: 999-1003
  12. Matsuzaki, T. and J. Chin. 2000. Modulating immune responses with probiotic bacteria. Immunol. Cell. Biol. 78: 67-73
  13. Matsuzaki, T., R. Yamazaki, S. Hashimoto, and T. Yokokura. 1998. The effect of oral feeding of lactobacillus casei strain shirota on immunoglobulin E production in mice. J. Dairy Sci. 81: 48-53
  14. Miettinen, M., J. Vuopio-Varkila, and K. Varkila. 1996. Production of human tumor necrosis factor alpha, interleukin 6 and interleukin 10 is induced by lactic acid bacteria. Infect. Immun. 64: 5403-5405
  15. Mosmann, T. R., H. Cherwinski, M. W. Bond, M. A. Giedlin, and R. L. Coffman. 1986. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J. Immunol. 136: 2348-2357
  16. Oksanen, P. J., S. Salminen, M. Saxelin, P. Hamalainen, A. Ihantola-Vormisto, L. Muurasniemi-Isoviita, S. Nikkari, T. Oksanen, I. Porsti, and E. Salminen. 1990. Prevention of travellers’ diarrhoea by Lactobacillus GG. Ann. Med. 22: 53-56
  17. Park, K. Y., H. Y. Jung, K. L. Woo, K. D. Jun, J. S. Kang, and H. D. Paik. 2002. Effects of Bacillus polyfermenticus SCD administration on fecal microflora and putrefactive metabolites in healthy adults. J. Microbiol. Biotechnol. 12: 657-663
  18. Ryan, J. J. 1997. Interleukin-4 and its receptor: Essential mediators of the allergic response. J. Allergy Clin. Immunol. 99: 1-5
  19. Schiffrin, E. J., D. Brassart, A. L. Servin, F. Rochat, and A. Donnet-Hughes. 1997. Immune modulation of blood leukocytes in humans by lactic acid bacteria: Criteria for strain selection. Am. J. Clin. Nutr. 66: 515-520
  20. Shida, K., R. Takahashi, E. Iwadate, K. Takamizawa, H. Yasui, T. Sato, S. Habu, S. Hachimura, and S. Kaminogawa. 2002. Lactobacillus casei strain Shirota suppresses serum immunoglobulin E and immunoglobulin G1 responses and systemic anaphylaxis in a food allergy model. Clin. Exp. Allergy 32: 563-570
  21. Vercelli, D. and R. Geha. 1992. Regulation of isotype switching. Curr. Opin. Immunol. 4: 794-797
  22. Waal Malefyt, R., J. Haanen, H. Spits, M. G. Roncarolo, A. te Velde, C. Figdor, K. Johnson, R. Kastelein, H. Yssel, and J. E. de Vries. 1991. Interleukin 10 (IL-10) and viral IL-10 strongly reduce antigen-specific human T cell proliferation by diminishing the antigen-presenting capacity of monocytes via downregulation of class II major histocompatibility complex expression. J. Exp. Med. 174: 915-924