Screening and Characterization of Psychrotrophic, Lipolytic Bacteria from Deep-Sea Sediments

  • Zeng, Xiang (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography) ;
  • Xiao, Xiang (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography) ;
  • Wang, Peng (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography) ;
  • Wang, Rengping (Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography)
  • Published : 2004.10.01

Abstract

Of 23 psychrotrophic bacteria isolated from the west Pacific deep-sea sediments, 19 were assigned to the $\gamma$-Proteobacteria, 3 to the <$\beta$-Proteobacteria, and 1 to the Gram-positive bacteria, as determined by their 16S rDNA sequences. Ten psychrotrophs, affiliated to the Psychrobacter, Pseudoalteromonas, and Pseudomonas genera in the $\gamma$-Proteobacteria group, were screened for lipolytic bacteria. The majority of the lipolytic isolates had growth temperatures between 4-$30^\circ{C}$, and all of them were neutrophilic, aerobic, or facultatively anaerobic, and some were able to produce multiple kinds of ectohydrolytic enzymes. The deep-sea strains Psychrobacter sp. wp37 and Pseudoalteromonas sp. wp27 were chosen for further lipase production analysis. Both strains had the highest lipase production when grown at 10 to $20^\circ{C}$; their highest lipase production occurred at the late-exponential growth stage; and the majority of the enzymes were excreted to the outside of the cells. Lipases from both strains had the same optimal reaction temperature and pH (20-$30^\circ{C}$, pH 7-8) and could retain about 60% of their highest activity at $4^\circ{C}$. Furthermore, SDS-PAGE and an in-gel activity test showed that they had the same high molecular mass of about 85 kDa.

Keywords

References

  1. Arpigny, J. L. and K E. Jaeger. 1999. Bacterial lipolytic enzymes: Classification and properties. Biochem. J. 343: 177-183.
  2. Barbaro, S. E., J. T. Trevors, and W. E. Inniss. 2001. Effects of low temperature, cold shock, and various carbon sources on esterase and lipase activities and exopolysaccharide production by a psychrotrophic Acinetobacter sp. Can. J. Microbiol. 47: 194- 205.
  3. Bowman, J. P. 2001. Methods for psychrophilic bacteria, pp. 591- 611. In H. John (ed.), Marine Microbiology. Academic Press, London.
  4. Bowman, J. P., J. Cavanagh, J. J. Austin, and K Sanderson. 1996.Novel Psychrobacter species from Antarctic omithogenic soils. Int. J. Syst. Bacteriol. 46: 841- 848.
  5. Bowman, J. P., D. S. Nichols, and T. A. Mcmeekin. 1997. Psychrobacter glacincola sp. nov., a halotolerant,psychrophilic bacterium isolated from Antarctic sea ice. Syst. Appl. Microbiol. 20: 209- 215.
  6. Buchon, L., P. Laurent, A. M. Gounot, and J. F. GuespinMichel. 2000. Temperatur e dependence of extracellular enzymes production by psychrotrophic and psychrophilic bacteria. Biotechnol. Lett. 22: 1577- 1581.
  7. Bull, A. T., A. C. Ward, and M. Goodfellow. 2000. Search and discovery strategies for biotechnology: The paradigm shift. Microbiol. Mol. Biol. Rev. 64: 573- 606.
  8. Chuang, Y. C, S. F. Chiou, J. H. Su, M. L. Wu, and M. C. Chang. 1997. Molecular analysis and expression of the extracellular lipase of Aeromonas hydrophila MCC-2. Microbiology 143: 803- 812.
  9. Corre, E., A. L. Reysenbach, and D. Prieur. 2001. $\varepsilon$-Proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol. Lett. 205: 329- 335.
  10. Delong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89: 5685- 5689. https://doi.org/10.1073/pnas.89.12.5685
  11. Deming, J. D. 1998. Deep ocean environmental biotechnology. Curr. Opin. Biotechnol. 9: 283- 287. https://doi.org/10.1016/S0958-1669(98)80060-8
  12. Holmstrom, C. and S. Kjelleberg. 1999. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol. Lett. 30: 285- 293.
  13. Ivanova, E. P., I. V. Bakunina, O. I. Nedashkovskaya, N. M. Gorshkova, Y. Y. Alexeeva, E. A. Zelepuga, T. N. Zvaygintseva, D. Y. Nicolau, and V. V. Mikhailov. 2003. Ecophysiological variabilities in ectohydrolytic enzyme activities of some Pseudoalteromonas species, P. citrea, P. issachenkonii, and P. nigrifaciens. Curr. Opin. Biotechnol. 46: 6- 10.
  14. Jaeger, K E. and T. Eggert. 2002. Lipases for biotechnology. Curr. Opin. Biotechnol. 13: 390- 397.
  15. Jaeger, K E., S. Ransac, B. W. Dijkstra, C Colson, M. van Heuvel, and O. Misset. 1994. Bacterial lipase. FEMS Microbiol. Rev. 15: 29- 63.
  16. Kasuya, K, H. Mitomo, M. Nakahara, A. Akiba, T. Kudo, and Y. Doi. 2000. Identification of a marine benthic P(3HB)- degrading bacterium isolate and characterization of its P(3HB)depolymerase. Biomacromolecules 1: 194- 201.
  17. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage $T_4$. Nature 227: 680- 685. https://doi.org/10.1038/227680a0
  18. Morita, R. Y. H. 1975. Psychrophilic bacteria. Bacteriol. Rev. 29: 144- 167.
  19. Romanenko, L. A., P. Schumann, M. Rohde, A. M. Lysenko, V. V. Mikhailov, and E. Stackebrandt. 2002. Psychrobacter submarines sp. nov. and Psychrobacter marincola sp. nov., psychrophilic halophiles from marine environments. J. Syst. Evol. Microbiol. 52: 1291- 1297.
  20. Philip, J. L., S. Anwar, D. Moreland, C. Natalie, N. Helena, and L. Peter. 2002. Prospecting for novel lipase genes using PCR. Microbiology 148: 2283- 2291.
  21. Martinez, J., D. C. Smith, G. F. Steward, and F. Azam. 1996. Variability in ectobydrolytic enzyme activities of pelagic marine bacteria and its significance for substrate processing in the sea. Aquat. Microb. Ecol. 10: 223- 230.
  22. Maruyama, A., D. Honda, H. Yamamoto, K. Kitamura, and T. Higashihara. 2000. Phylogenetic analysis of psychrophilic bacteria isolated from the Japan Trench, including a description of the deep-sea species Psychrobacter pacificensis sp. nov. J. Syst. Evol. Microbiol. 50: 835- 846.
  23. Raguenes, G., R. Christen, J. Guezennec, P. Pignet, and G. Barbier. 1997. Vibrio diabiolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana. Int. J. Syst. Bacterial. 47: 989- 995.
  24. Rougeaux, H., J. Guerzennec, R. W. Carlson, N. Kervarec, R. Pichon, and P. Talaga. 1999. Structure determination of the exopolysaccharide of Pseudoaltermonas strain HYD 721 isolated from a deep-sea hydrothermal vent. Carbohydr. Res. 315: 273- 285.
  25. Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
  26. Sass, A. M., H. Sass, M. L. Coolen, H. Cypionka, and J. Overmann. 2001. Microbial communities in the chemocline of a hypersaline deep-sea basin (Urania Basin, Mediterranean Sea). Appl. Environ. Microbiol. 67: 5392- 5402.
  27. Surinenaite, B., V. Bendikiene, B. Juodka, 1. Bachmatova, and L. Marcinkevichiene. 2002. Characterization and physicochemical properties of a lipase from Pseudomonas mendocina 3121-1. Biotech. Appl. Biochem. 36: 47- 55.
  28. Suzuki, T., T. Nakayama, T. Kurihara, T. Nishino, and N. Esaki. 2001. Cold-active lipolytic activity of psychrotrophic Acinetobacter sp. strain NO.6. J. Biosci. Bioeng. 92: 144-148.
  29. Takami, H., K. Kobata, T. Nagahama, H. Kobayashi, A. Inoue, and K. Horikoshi. 1999. Biodiversity in deep-sea sites located near the south part of Japan. Extremophiles 3: 97-102.
  30. Takami, H., A. Inoue, F. Fuji, and K. Horikoshi. 1997. Microbial flora in the deep sea mud of the Mariana Trench. FEMS Microbiol. Lett. 152: 279- 285.
  31. Teske, A., T. Brinkhoff, D. P. Moser, J. Rethmeier, and H. W. Jannasch. 2000. Diversity of thiosulfate-oxidizing bacteria from marine sediments and hydrothermal vents. Appl. Environ. Microbiol. 66: 3125- 3133.