Characteristics of Geochemical Processes along the Salinity Gradient in the Han River Estuary

한강 기수역에서 염분구배에 따른 지화학적 특성 변화

  • Published : 2004.11.01

Abstract

To understand the geochemical processes in the Han River Estuary, distributions and behaviors of nutrients, dissolved organic matters, and uranium were investigated and analyzed during estuarine tidal mixing in June 2000 and February 2001. The distribution of inorganic nutrients showed very dynamic distributional patterns implying an apparent nitrification process and a concave non-conservative mixing along the salinity gradient. Dissolved organic carbon was high in the upstream region and decreased sharply in the low salinity region of around 5 psu. The 3-D fluorescence characteristic of dissolved organic matter showed two distinct fluorophores in the study area. Biomacromolecules originated mainly from the indigenous biochemical processes and geomacromolecules from terrestrial humic materials. In the study area, the distribution of geomacromolecule showed a concave non-conservative property along the salinity gradient presumably due to the flocculation and removal processes in the estuary. Meanwhile, distribution of the dissolved uranium, mainly in the form of stable uranium carbonate complex, also showed a concave non-conservative property along the salinity gradient in the Han River Estuary. From this study, the removal rate of dissolved uranium in the Han River Estuary was estimated to be about 7.1 ton per year.

한강 기수역에서 일어나는 지화학적 변화과정을 파악하기 위하여 2000년 6월과 2001년 2월 두 차례에 걸쳐 용존 무기영양염류,용존 유기 탄소,추출된 용존 유기물의 형광 특성, 용존 우라늄의 분포특성에 대해서 연구하였다. 용존 무기 영양염류는 염분이 증가함에 따라 감소하였는데,특히 질소계 영양염류의 경우 기수역에서 뚜렷한 질산화 과정(nitrification process)을 보였다. 인산-인 또한 질소계 영양염류와 같이 기수역에서 비보존적 분포특성을 보였다 용존 유기탄소와 형광 유기물은 염분이 증가함에 따라 감소하는 모습을 보였는데, 특히 5 psu이하의 저염분대에서 급격히 감소하는 양상을 나타내었다. 이러한 현상은 육상 기원의 지구거대 유기물질이 이온강도가 증가하는 기수역에서 응집, 침전하여 제거되기 때문으로 생각된다. 한편 용존 우라늄은 대부분 강을 통하여 해양으로 유입되는데, 염분이 증가함에 따라 같이 증가하는 양의 상관관계를 보였다. 용존 우라늄은 기수역에서 제거되는 비보존적인 분포 특성을 보였는데. 이는 용존 우라늄의 일부가 유기물질과 착화합물의 형태로 제거되기 때문으로 생각된다. 염분과 용존 우라늄의 분포 상관관계로부터 추정된 한강 기수역에서 용존 우라늄 제거량은 약 7.1 ton/year으로 Savannah salt marsh에서의 제거량과 비교해볼 때 약 51.4%에 해당하였다.

Keywords

References

  1. 인천직할시, 1993. 인천지역의 수질보전 대책 수립을 위한 실태조사 용역. 520 pp
  2. 정경호, 박용철, 1988. 서해 경기만의 기초 생산력 및 질소계 영양염의 재생산에 관한 연구. 한국해양학회지, 23(4): 194-206
  3. 현정호, 정경호, 박용철, 최중기, 1999. 한강 기수 역에서의 암모늄 제거율 변화 및 질산화의 잠재적 역할. 한국해양학회지 바다, 4(1): 33-39
  4. Anderson, R.R, 1982. Concentration, vertical flux, and remineraliza- tion of paniculate uranium in seawater. Geochim. Cosmochim. Acta, 101: 761-767
  5. Andersson, P.S., D. Porcelli, O. Gustafsson, J. Ingh and G.J. Was- senberg, 2001. The Importance of colloids for the behavior of uranium isotopes in the low-salinity zone of a stable estuary Geochim. Cosnwchim. Acta, 65: 13-25
  6. Bale, A.J. and A. W. Morris, 1981. Laboratory Simulation of Chem- ical Processes Induced by Estuahne Mixing: The Behaviour ofIron and Phosphate in Estuaries. Est. Coast. Shelf Sci., 13: 1-10 https://doi.org/10.1016/S0302-3524(81)80101-6
  7. Chen, R.F. and J.L. Bada, 1992. Tlie fluorescence of dissolvedorganic matter in seawater. Mar. Chem., 37: 191-221 https://doi.org/10.1016/0304-4203(92)90078-O
  8. Coble, P.G., S.A. Green, N.V. Blough and R.B. Gagosian, 1990. Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature, 348: 432-435 https://doi.org/10.1038/348432a0
  9. Fox, L.E.,1991. The transports and composition of humic substances in estuaries, In: Baker, R.A.(Ed.), Organic Substances and Sed- iments in Water, Vol. I, Humics and Soils, Lewis Publishing, Chelsea, MI, pp. 129-162
  10. Kieber, R.J., X. Zhou and K. Mopper, 1990. Formation of carbonylcompounds from UV-induced photodegradation of hurnic sub-stances in natural waters: Fate of riverine carbon in the sea. Lim-not. Oceanogr., 35: 1503-1515 https://doi.org/10.4319/lo.1990.35.7.1503
  11. Ku, T.L., K.G. Rnauss and G.G. Mathieu, 1977. Uranium in the open ocean: concentration and isotopic composition. Deep Sea Res., 24: 1005-1017 https://doi.org/10.1016/0146-6291(77)90571-9
  12. Lanne, R.W.P.M. and K.J.M. Kramer, 1990. Natural fluorescence in the North Sea and its major estuaries. Neth. Jour. Sea Res., 26: 1-9 https://doi.org/10.1016/0077-7579(90)90052-I
  13. Lee, C.B., B.S. Kim and C.H. Koh, 2001. Speciation of Some Heavy Metals in Surface and Core Sediments of Kyeonggi Bay, West Coast in Korea. J. Oceanot. Soc. Korea, 36: 9-18
  14. Lee, W.J. and J.K. Choi, 2000. The Role of Heterotrophic Protists in the Planktonic Community of Kyeonggi Bay, Korea. J. Oceanot. Soc. Korea, 35: 46-55
  15. Li, Y.H. and L.H. Chan, 1979. Desorption of Ba and Ra-226 from river-bome sediments in the Hudson estuary. Earth and Ptane- tary Sci. Lett., 43: 343-350 https://doi.org/10.1016/0012-821X(79)90089-X
  16. Liss, P.S., 1976. Conservative and non-conservative behaviour of dis- solved constituents during estuarine mixing, In Estuahne Chem- istry (Burton, J.D. and Liss, P.S., eds), Acadernic Press, London, pp. 93-130
  17. Maeda, M. and H.L. Windom, 1982. Behavior of uranium in two estu- aries of the southeastern United States. Mar. Chem, 11: 427-436 https://doi.org/10.1016/0304-4203(82)90008-1
  18. Millero, F.J. and M.L. Sohn, 1992. Chemical Oceanography. CRC Press, pp. 227-366
  19. Moore, W.S., 1992. Radionudides of the U and thorium decay series in the estuarine environment, In U- series Disequilibiium: Applica- tions to Earth, Maiine and Environmental Sciences(ed. M. Ivanovich and R. S. Harmon), Clarendon Press Oxford, pp. 396-422
  20. Mopper, K. and C.A. Schultz, 1993. Fluorescence as a possible tool for studying the nature and water column distribution of DOC components. Mar. Chem, 41: 229-238 https://doi.org/10.1016/0304-4203(93)90124-7
  21. Park, Y.C., D.H. Kim, H.J. Lee, J.W. Son, C.H. Yoon and S.J. Ha, 2002. Geochemistry of dissolved uranium and its distribution along the salinity gradient in the Han River estuary, Korea. The Yeftow Sea, 8(1): 24-28
  22. Park, Y.C., S.J. Kim and M.W. Han, 2000. Nutdents loading and its impact on the coastal environment: Kyeonggi Bay, Korea. The Yellow Sea, 6: 73-76
  23. Park, Y.C., S.K. Son, K.H. Chung and K.H. Kim, 1995. Character- istics of fluorescent organic matter and amino acids composition in the East Sea. J. Oceanot. Soc. Korea, 30(4): 341-354
  24. Parsons, T.R., Y. Maita and C.M. Lalli, 1984. A manual of chemical and biological method for seawater analysis. Pergamon Press, pp. 3-28
  25. Paucot, H. and R. Wollast, 1997. Transports and transformation of trace metals in the Scheldt estuary. Mar. Chem, 58: 229-244 https://doi.org/10.1016/S0304-4203(97)00037-6
  26. Solorzano, L., 1969. Determination of ammonia in natural waters by the phenol hypochlorite method. Limnot. Oceanogr., 14: 779-801
  27. Stehr, G., B. Bottcher, P. Dittbemer, G. Rath and H.P. Koops, 1995. The ammonia-oxidizing nitrifying population of the River Elbe estuary. FEMS Microbiol. Ecot. 17: 177-186 https://doi.org/10.1111/j.1574-6941.1995.tb00141.x
  28. Sugimura, Y. and Y. Suzuld, 1988. A high-temperature catalytic oxi- dation method for the determination of non-volatile dissolved organic carbon in seawater by direct injection of a liquid sample. Mar. Chem, 24: 105-131 https://doi.org/10.1016/0304-4203(88)90043-6
  29. Swarzenski, P.W., B.A. McKee and J.G. Booth, 1995. Uranium geochemistry on the Amazon shelf: Chemical phase partitioning and cycling across a salinity gradient. Geochim. Cosmochim. Acta, 59:pp.7-18 https://doi.org/10.1016/0016-7037(94)00371-R
  30. Toole, J., S.B. Murdoch and T. John, 1987. The Behaviour of Ura- nium Isotope with Salinity Change in Three U.K. Estuaiies. Est. Coast. SheIf Sci., 25: 283-297 https://doi.org/10.1016/0272-7714(87)90072-2
  31. Turekian, K.K. and L.H. Chan, 1971. The marine geochemistry of the uranium isotope, $^{230}TH$ and $^{231}Pa$. In Activation Analysis. inGeochemistry and Cosmochemistry(Brunfe1d, A.O. and Steinnes,E. eds), Universitestforlaget, Oslo, pp. 311-320
  32. Wolaver, T.G., S. Hutchinson and M. Marozas, 1986. Dissolved and particulate organic carbon in the North Inlet estuary, South Caro- lina: what controls their concentrations. Estuaries, 9(1): 31-38 https://doi.org/10.2307/1352190
  33. Wang, X.C., R.F. Chena and G.B. Gardnera, 2004. Sources and transport of dissolved and paniculate organic carbon in the Mis- sissippi River estuary and adjacent coastal waters of the northern Gulf of Mexico. Mar. Chem., 89: 241-256 https://doi.org/10.1016/j.marchem.2004.02.014
  34. Windom, H., R. Smith, F. Niencheski and C. Alexander, 2000. Ura- nium in rivers and estuaries of globally diverse, smaller water- sheds. Mar. Chem, 68: 307-321 https://doi.org/10.1016/S0304-4203(99)00086-9
  35. Zwolsman, J.J.G., G.T.M. Van Eck and C.H. Van der Weijden, 1997. Geochemistry of dissolved trace meta1s(cadmium, copper, zinc) in the Scheldt estuary, southwestern Metherlands: Impacts of sea- sonal variability. Geochim. Cosmochim. Acta, 61: 1635-1652 https://doi.org/10.1016/S0016-7037(97)00029-X