Preparation and Mechanical Properties of Nanocomposite of Cellulose Diacetate/Montmorillonite

셀룰로오스 디아세테이트/몬모릴로나이트 나노복합체의 제조 및 기계적 물성

  • 조미숙 (성균관대학교 화학공학과) ;
  • 최성헌 (성균관대학교 화학공학과) ;
  • 남재도 (성균관대학교 고분자공학과) ;
  • 이영관 (성균관대학교 화학공학과)
  • Published : 2004.11.01

Abstract

Cellulose diacetate (CDA) nanocomposite films were prepared by using various plasticizer and montmorillonite nanofiller in methylene chloride/ethanol (9:1 w/w) mixed solution. The thermal property (T$_{g}$) of prepared CDA films was observed by DSC and T$_{g}$ of the films was decreased with the increase in the plasticizer content. The degree of dispersion of MMT in the CDA film was observed by XRD and mechanical property of CDA film was measured by tensile strength and Young's modulus. When the plasticizer was added into the CDA film upto 30 wt%, the Young's modulus of film was decreased from 1930 MPa to 1131 MPa but was increased from 1731 MPa to 2272 MPa when the MMT was added into the film upto 7 wt%. The mechanical properties of CDA films were decreased by addition of plasticizer but strengthened by the incorporation of MMT.

셀룰로오스 디아세테이트에 다양한 종류의 가소제와 몬모릴로나이트를 메틸렌 클로라이드/에탄올 (9:1 w/w) 혼합용매에 첨가해 나노복합 필름 (nanocomposite film)을 제조하였다. 시차 주사 열분석 (DSC)을 이용하여 제조된 셀룰로오스 디아세테이트 필름의 열적 특성 (T$_{g}$)을 관찰하였으며, 가소제 함량이 증가함에 따라 T$_{g}$가 감소함을 관찰할 수 있었다. X-ray 회절 (XRD)을 이용하여 셀룰로오스 디아세테이트 필름내에서 몬모릴로나이트가 분산되는 정도를 관찰하였으며, 인장 강도와 인장 탄성률을 측정하여 셀룰로오스 디아세테이트 필름의 기계적 물성을 관찰하였다. 가소제의 함량을 30 wt%까지 증가시켰을 때 인장 탄성률은 1930 MPa에 1131 MPa로 감소하였고, 몬모릴로나이트의 함량을 7 wt%까지 증가시켰을 때 1731 MPa에서 2272 MPa로 증가하였다. 셀룰로오스 디아세테이트 필름의 기계적 물성은 가소제를 첨가할수록 감소하지만, 몬모릴로나이트의 첨가로 강화시킬 수 있다.다.

Keywords

References

  1. R. A. Gross and B. KaIra, Science, 297, 803 (2002)
  2. R. Iranpour, M. Stenstrom, G. Tchobanoglous, D. Miller, J. Wright, and M. Vossoughi, Science, 285, 706 (1999)
  3. J. Hosokawa, M. Nishiyama, K. Yoshihara, and T. Kubo, Ind. Eng. Chem. Res., 29, 800 (1990)
  4. J. Hosokawa, M. Nishiyama, K. Yoshihara, T. Kubo, and A. Terabe, Ind. Eng. Chem. Res., 30, 788 (1991)
  5. C. M. Buchanan, R. M. Gardner, and R. J. Komarek, J. Appl. Polym. Sci., 47, 1709 (1993)
  6. F. D. Innocenti, M. Tosin, and C. BastioIi, J. Environ. Polym. Degrad., 6, 197 (1998)
  7. A. I. Suvorova, I. S. Tjukova, and E. I. Trufanova, J. Environ. Polym. Degrad., 7, 35 (1999)
  8. A. K. Mohanty, M. Misra, and G. Hinrichsen, Macromol. Mat. Eng., 276/277, 1 (2000)
  9. M. A. Frohoff-Hulsmann, N. C. Lippold, and K. W. McGinity, Eur. J. Pharm. Biopharm., 48, 67 (1999)
  10. S. R. Bechard, L. Levy, and S. D. CIas, Int. J. Pharm., 114, 205 (1995)
  11. R. Hyppola, I. Husson, and F. Sundholm, Int. J. Pharm., 133, 161 (1996)
  12. P. Reichert, H. Nitz, S. Klinke, R. Brandsch, R. Thomann, and R. Mulhaupt, Macromol. Mat. Eng., 275, 8 (2000)
  13. P. Kodgire, R. Kalgaonkar, S. Hambir, N. Bulakh, and J. P. Jog, J. Appl. Polym. Sci., 81, 1786 (2001)
  14. P. C. Lebaron, Z. Wang, and T. J. Pinn, Appl. Clay Sci., 15, 11 (1999)
  15. J. H. Lee, J. H. Nam, D. H. Lee, M. D. Kim, J. H. Kong, Y. Lee, and J. D. Nam, Polymer (Korea), 27, 569 (2003)
  16. J. G. Ryu, G. R. Park, S. G. Lyu, J. H. Rhew, and G. S. Sur, Polymer (Korea), 22, 328 (1998)
  17. Y. H. Lee, S. K. Hong, K. S. Yoon, I. Choi, S. G. Lee, J. H. Lee, and K. Y. Choi, Polymer (Korea), 25, 818 (2001)
  18. E. Ferjani, R. H. Lajimi, A. Deratani, and M. S. Rondesli, Desalination, 146, 325 (2002)
  19. B. Pintaric, M. Rogosic, and H. J. Mencer, J. Mol. Liq., 85, 331 (2000)
  20. T. Kimura, M. Yamato, S. Endo, F. Kimura, H. Sata, H. Kawasaki, and Y. Shinagawa, J. Polym. Sci. (B): Polym. Phys., 39, 1942 (2001)
  21. M. Paul, M. Alexandre, P. Degee, C. Henrist, A. Rulmont, and P.Dubois, Polymer, 44, 443 (2003)
  22. M. Tarvainen, R. Sutinen, S. Peltonen, H. Mikkonen, J. Maunus, K. V. Heikkila, V. P. Lehto, and P. Paronen, Eur. J. Pharm. Sci., 19, 363 (2003)
  23. J. H. Lee, T. G. Park, H. S. Park, D. S. Lee, Y. Lee, S. C. Yoon, and J. D. Nam, Biomaterials, 24, 2773 (2003)