DOI QR코드

DOI QR Code

Prediction of visual performance using contrast sensitivity function and modulation transfer function

대비감도함수와 변조전달함수를 이용한 시기능 예측

  • Kim Sang Gee (Optometry & vision science, Dongnam Health College) ;
  • Park Sung Chan (Electro Physics Major, School of Advanced Science, Dankook University)
  • 김상기 (동남보건대학 안경광학과) ;
  • 박성찬 (단국대학교 첨단과학부 전자물리학전공)
  • Published : 2004.10.01

Abstract

A finite model eye of visual acuity 24/20 in emmertropia was presented. We determined the image intensity profile on retina using optical transfer function of model eye, and compared with clinical data. The retinal contrast sensitivity function based on the Stiles-Crawford effect, photopic response, diffraction, aberration, retinal contrast sensitivity, and pupil size is calculated. Visual acuity for human eye could be predicted by examining the modulation transfer function of a bar target and retinal contrast sensitivity function. This visual acuity was evaluated for pupil diameters ranging from 1 to 8 mm.

본 논문에서 연구된 정밀모형안은 정시안에서 1.2 시력의 적정한 수차를 가진 모형안임을 확인하였다. 망막의 특성을 생략한 안광학계에 광전달함수를 사용하여 망막에서의 광세기 분포를 조사하여 자각식으로 측정한 임상자료와 비교하였다. 망막의 광학적 특성을 나타내는 안구의 수차, 회절, 망막 대비감도, Stiles-Crawford 효과, 동공크기를 포함한 대비감도함수를 계산하였다. 모형안에 동공직경 1 mm와 8 mm의 범위에서 정시안과 비정시안에 대해 대비감도함수와 변조전달함수를 비교하여 시력을 예측하였다.

Keywords

References

  1. J. Schwiegerling, 'Theoretical Limits to Visual Performance,' surv. ophthalmol., vol. 45, no. 2, pp. 139-146, 2000 https://doi.org/10.1016/S0039-6257(00)00145-4
  2. J. E. Greivenkamp, J. Schwiegerling, J. M. Miller, M. D. Mellinger, 'Visual Acuity Modeling Using Optical Raytracing of Schematic Eyes,' Am. J. Ophthalmol., vol. 120, no. 2, pp. 227-240, 1995 https://doi.org/10.1016/S0002-9394(14)72611-X
  3. J. T. Holladay, M. J. Lynn, G. O. Waring, M. Gemmill, G. C. Keehn, B. Fielding, 'The Relationship of Visual Acuity, Refractive Error, and Pupil Size After Radial Keratotomy,' Arch. Ophthalmol., vol. 109, 1991
  4. R. Navarro, J. Santamaria, J. Bescos, 'Accommodation-dependent model of the human eye with aspherics,' J. Opt. Soc. Am. A, vol. 2, no. 8, pp. 1273-1281, 1985 https://doi.org/10.1364/JOSAA.2.001273
  5. S. Marcos, S. A. Burns, E. Moreno-Barriusop, R. Navarro, 'A new approach to the study of ocular chromatic aberrations,' Vision Research, vol. 39, no. 26, pp. 4309-4323, 1999 https://doi.org/10.1016/S0042-6989(99)00145-5
  6. R. A. Applegate, L. N. Thibos, G. Hilmantel, 'Optics of aberroscopy and super vision,' J. Cataract Refract. Surg., vol. 27, pp 1093-1107, 2001 https://doi.org/10.1016/S0886-3350(01)00856-2
  7. R. B. Rabbetts, Clinical visual optics(Butterworth-Heinemann, 1998), pp. 91-112
  8. F. W. Campbel, D. G. Green, 'Optical and retinal factors affecting visual resolution,' J. Physiol., vol. 181, pp. 576-593, 1965 https://doi.org/10.1113/jphysiol.1965.sp007784
  9. F. W. Campbel, R. W. Gubisch, 'Optical quality of the human eye,' J. Physiol., vol. 186, pp. 558-578, 1966 https://doi.org/10.1113/jphysiol.1966.sp008056
  10. E. Peli, 'Contrast Sensitivity Function and Image Discrimi-nation,' J. Opt. Soc. Am. A, vol. 18, no. 2, pp. 283-293, 2001 https://doi.org/10.1364/JOSAA.18.000283
  11. J. Rovamo, H. Kukkonen, J. Mustonen, 'Foveal Optical Modulation Transfer Function of the Human eye at various pupil sizes,' J. Opt. Soc. Am. A, vol. 15, no. 9, pp. 2504-2513, 1998 https://doi.org/10.1364/JOSAA.15.002504
  12. D. R. Williams, 'Visibility of Interference Fringes near the Resolution Limit,' J. Opt. Soc. Am. A, vol. 2, no. 7, pp. 1087-1093, 1985 https://doi.org/10.1364/JOSAA.2.001087

Cited by

  1. A Study on Assessment of MTF Performance and Theoretical Analysis of Convex Trial Lenses vol.24, pp.5, 2013, https://doi.org/10.3807/KJOP.2013.24.5.217
  2. Evaluation of Visual Performance for Implanted Aspheric Multifocal Intraocular Lens in the Cataract Patients vol.18, pp.3, 2013, https://doi.org/10.14479/jkoos.2013.18.3.347