Nickel Toxicity and Carcinogenicity

니켈의 독성과 발암성

  • Published : 2004.06.01

Abstract

Human exposure to highly nickel-polluted environments, such as those associated with nickel refining, electroplating, and welding, has the potential to produce a variety of pathologic effects. Among them are skin allergies, lung fibrosis, and cancer of the respiratory tract. The exact mechanisms of nickel-induced carcinogenesis are not known and have been the subject of numerous epidemiologic and experimental investigations. This review provides the evidence of the current state for the genotoxic and mutagenic activity of Ni (II) particularly at high doses. Such doses are best delivered into the cells by phagocytosis of sparingly soluble nickel-containing dust particles. Ni (II) genotoxicity may be aggravated through the generation of DNA-damaging reactive oxygen species (ROS) and the inhibition of DNA repair by this metal. The epigenetic effects of nickel includes alteration in gene expression resulting from DNA hypermethylation and histone hypoacetylation, as well as activation some signaling pathways and subsequent transcrziption factors.

Keywords

References

  1. An WG, Kanekal M, Simon MC, Maltepe E and Neckers LM. Stabilization of wild-type p53 by hypoxia-inducible factor 1 alpha, Nature 1998; 392: 405-408 https://doi.org/10.1038/32925
  2. Arrouijal FZ, Hildebrand HF, Vophi H and Marzin D. Genotoxic activity of nickel subsulphide alpha-$Ni_3S_2$, Mutagenesis 1990; 5: 583-589 https://doi.org/10.1093/mutage/5.6.583
  3. Arvidsson H and Bogg A. Transitory pulmonary infilterations in acute generalized dermatitis, Acta Derma. Venereologica 1959; 39: 30-34
  4. Bal W, Kozlowski H and Kasprzak KS. Molecular models in nickel carcinogenesis, J. Inorg. Biochem. 2000; 79: 213-218 https://doi.org/10.1016/S0162-0134(99)00169-5
  5. Bal W, Schwerdtle T and Hartwig A. Mechanism of nickel assault on the zinc finger of DNA repair protein XPA, Chem. Res. Toxicol. 2003; 16: 242-248 https://doi.org/10.1021/tx025639q
  6. Biedermann KA and Landolph JT. Induction of anchorage independence in human diploid foreskin fibroblasts by carcinogenic metal salts, Cancer Res. 1987; 47: 3815-3823
  7. Biggart NW, Gallick GE and Murphy Jr. EC. Nickel-induced heritable alterations in retroviral transforming gene expression, J. Virol. 1987; 61: 2378-2388
  8. Broday L, Peng W, Kuo MH, Salnikow K, Zorod DU M and Costa M. Nickel compounds are novel inhibitors of histone H4 acetylation, Cancer Res. 2000; 60 (2): 238-241
  9. Buzard GS and Kasprzak KS. Possible roles of nitric oxide and redox cell signaling in metal-induced toxicity and carcinogenesis: a review, J. Environ. Pathol. Toxicol. Oncol. 2000; 19: 179-199
  10. Cai Y and Zhuang Z. DNA damage in human peripheral blood lymphocyte caused by nickel and cadmium (Chin), Zhonghua Yu Fang Yi Xue Za Zhi 1999; 33: 75-77
  11. Campbell JA. Lung tumours in mice and man, Br. Med. J. 1943; 1: 179-183 https://doi.org/10.1136/bmj.1.4284.179
  12. Carson BC, Ellis HV and McCann JL. Toxicology and Biological Monitoring of Metals in Humans: Including Feasibility and Need: Lewis Publishers, Chelsea, Michigan, 1986
  13. Chandel NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC and Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription, Proc. Natl. Acad. Sci. USA 1998; 95: 11715-11720 https://doi.org/10.1073/pnas.95.20.11715
  14. Chiocca SM, Sterner DA, Biggart NW and Murphy EC Jr.Nickel mutagenesis: alteration of the MuSVtsllO ther-mosensitive splicing phenotype by a nickel-induced duplication of the 3'splice site, Mol. Carcinog. 1991; 4: 61-71 https://doi.org/10.1002/mc.2940040110
  15. Christie NT, Cantoni 0, Sugiyama M, Cattabeni F and Costa M. Differences in the effects of Hg (II) on DNA repair induced in Chinese hamster ovary cells by ultra-violet or X-rays, Mol. Pharmacol. 1986; 29: 173-178 https://doi.org/10.1159/000138009
  16. Christie NT, Tummolo DM, Klein CB and Rossman TG. Role of Ni (II) in mutation, in: Nieboer E, Nriagu JO (Eds), Nickel and Human Health: Current Perspectives, Wiley, New York, 1992; 305-317
  17. Conway K and Costa M. Nonrandom chromosomal alterations in nickel-transformed Chinese hamster embryo cells, Cancer Res. 1989; 49: 6032-6038
  18. Coogan TP, Latta DM, Snow ET and Costa M. Toxicity and carcinogenicity of nickel compounds, Crit. Rev. Toxicol. 1989; 19:341-384 https://doi.org/10.3109/10408448909029327
  19. Costa M and Mollenhauer HH. Carcinogenic activity of paniculate nickel compounds is proportional to their cellular uptake, Science 1980; 209: 515-517 https://doi.org/10.1126/science.7394519
  20. Costa M. Molecular mechanisms of nickel carcinogenesis, Ann. rev. Pharmacol. Toxicol. 1991; 31: 321-337 https://doi.org/10.1146/annurev.pa.31.040191.001541
  21. Costa M. Mechanisms of nickel genotoxicity and carcino-genicity, in Chang LW (Ed.), Toxicology of Metals, CRC Press, Boca Raton 1996; 245-251
  22. Coyle CL and Stiefel EL. The coordination chemistry of nickel: an introductory survey, In: Lancaster JR, editor. The bioinorganic chemistry of nickel, Weinheim: VCH Publishers, 1988; 1-28
  23. Daldrup T, Haarhoff K and Szathmary SC. Teodliche nickel sulfate intoxikation, Berichte Zur. Gerichlichen Medizin 1983;41: 141-144
  24. Denkhaus E and Salnikow K. Nickel essentiality, toxicity, and carcinogenicity, Crit. Rev. Oncol. Hematol. 2002; 42:35-56 https://doi.org/10.1016/S1040-8428(01)00214-1
  25. Diwan BA, Kasprzak KS and Rice JM. Transplacental carcinogenic effects of nickel (II) -acetate in the renal cortex, Carcinogenesis 1992; 13: 1351-1357 https://doi.org/10.1093/carcin/13.8.1351
  26. Doll R. Report of the International Committee on Nickel Carcinogenesis in Man, Scan. J. Work. Environ. Health 1990;16: 9-82
  27. Dubins JS and LaVelle JM. Nickel (II) genotoxicity: potentiation of mutagenesis of simple alkylating agents, Mutat.Res. 1986; 162: 187-199
  28. Evans RM, Davies PJ and Costa M. Video timelapse microscopy of phagocytosis and intracellular fate of crystalline nickel sulfide particles in cultured mammalian cells, Cancer Res. 1982, 42: 2729-2735
  29. Ferm VH and Carpenter S. The teratogenic effects of metals on mammalian embryo, Adv.Teratol. 1968; 5: 51-75
  30. Fletcher GG, Rosetto FE, Turnbull JD and Nieboer E. Toxicity, uptake, and mutagenicity of paniculate and soluble nickel compounds, Environ. Health Perspect 1994; 102 (suppl 3): 69-79
  31. Foulkes EC and McMullen DM. On the mechanism of nickel absorption in the rat jejunum, Toxicology 1986; 38:35-42 https://doi.org/10.1016/0300-483X(86)90170-8
  32. Funakoshi T, Inoue T, Shimada H and Kojima S. The mechanism of nickel uptake by rat primary hepatocyte cultures: role of calcium channels, Toxicology 1997; 124:21-26 https://doi.org/10.1016/S0300-483X(97)00131-5
  33. Goebeler M, Meinardus-Hager G and Roth J. Nickel chloride and cobalt chloride, two common contact sensi-tizers, directly induce expression of ICAM-l, VCAM 1, and ELAM-l by endothelial cells, J. Invest Dermatol. 1993; 100: 759-765 https://doi.org/10.1111/1523-1747.ep12476328
  34. Goebeler M, Roth J and Brocker EB. Activation of nuclear factor-kappa B and gene expression in human endothe-lial cells by the common haptens nickel and cobalt, J. Immunol. 1995; 155: 2459-2467
  35. Goldberg MA, Dunning SP and Bunn HF. Regulation of the erythropoietin gene: evidence that the oxigene sensor is a heme protein, Science 1988; 242: 1412-1415 https://doi.org/10.1126/science.2849206
  36. Graven KK, McDonald RJ and Farber HW. Hypoxia regulation of endothelial glyceraldehyde-3-phosphate dehydrogenase, Am. J. Physiol. 1998; 43: 347-355
  37. Grimsrud TK, Berge SR, Martinsen JI and Andersen A. Lung cancer incidence among Norwegian nickel-refinery workers, 1953-2000, J. Environ. Monit. 2003; 5: 190-197 https://doi.org/10.1039/b211722n
  38. Hansen K and Stern RM. In vitro toxicity and transformation potency of nickel compounds, Environ. Health Perspect 1983;51: 223-226 https://doi.org/10.2307/3429753
  39. Hartwig A, Mullenders LHF, Schlepegrell R, Kasten U and Beyersmann D. Nickel (II) interferes with the incision step in nucleotide excision repair in mammalian cells, Cancer 1994; 54: 4045-4051
  40. Hartwig A, Asmuss M, Blessing H, Hoffmann S and Burkle A. Interference by toxic metal ions with zinc-dependent proteins involved in maintaining genomic stability Food Chem. Toxicol. 2002; 40: 1179-1184
  41. Harty LC, Guinee Jr. DG, Travis WD, Bennett WP, Jett J, Coby TV, Tazelaar H, Trastek V, Pairolero P, Liotta LA, Harris CC and Caporaso NE. p53 mutations and occupational exposures in a surgical series of lung cancers, Cancer Epidemiol. Biomark. Prev. 1996; 5: 997-100
  42. Hernandez-Boussard T, Rodriguez-Tome P and Montesano R. IARC p53 mutation database: a relational database to compile and analyze p53 mutations in human tumors and cell lines, Hum. Mutat. 1999; 14: 1-8 https://doi.org/10.1002/(SICI)1098-1004(1999)14:1<1::AID-HUMU1>3.0.CO;2-H
  43. Herrero MC, Alvarez C, Cartana J, Blade C and Arola L. Nickel effects on hepatic amino acids, Res. Commun. Chem. Pathol. Pharmacol. 1993; 79: 243-248
  44. Higinbotham KG, Rice JM, Diwan BA, Kasprzak KS, Reed CD and Perantoni AO. GGT to GTT transversions in codon 12 of the Kras oncogene in rat renal sarcomas induced with nickel subsulfide or nickel subsulfide/iron are consistent with oxidative damage to DNA, Cancer Res. 1992,52:4747-4751
  45. Ho VT and Bunn HF. Effects of transition metals on the expression of the erythropoietin gene: further evidence that the oxygen sensor is a heme protein, Biochem. Biophys. Res. Cornmun. 1996; 223: 175-180 https://doi.org/10.1006/bbrc.1996.0865
  46. Hopfer SM, Sunderman FW Jr., Frednckson TN and Morse EE. Increased serum erythropoietin activity in rats following intrarenal injection of nickel subsulfide, Res Commun. Chem. Pathol. Pharmacol. 1979; 23 (1): 155-170
  47. Hopfer SM, Linden JV, Cristomo C and Sunderman Jr. FW. Hypemickelemia in hemodialysis patients, Annals Cli. Lab. Science; 14: 12-13
  48. Horak E, Zygowicz ER, Tarabishy R, Mitchell JM and Sunderman FW Jr. Effects of nickel chloride and nickel carbonyl upon glucose metabolism in rats, Ann. Clin. Lab.Sci. 1978: 8(6): 476-482
  49. Huang X, Klein CB and Costa M. Crystalline $Ni_3S_2$ specifi-cally enhances the formation of oxidants in the nuclei of CHO cells as detected by dichlorofluorescein, Carcinogenesis 1994; 15 (3): 543-548
  50. Huang LE, Ho V and Arany Z. Erythropoietin gene regu-lation depends on heme-dependent oxygen sensing and assembly of interacting transcription factors, Kidney Int. 1997;51:548-553 https://doi.org/10.1038/ki.1997.76
  51. Huang LE, Gu J, Schau M and Bunn HF. Regulation of hypoxia-inducible factor 1 alpha is mediated by an 02-dependent degradation domain via the ubiquitin proteasome pathway, Proc. Natl. Acad. Sci. USA 1998; 95:7987-7992 https://doi.org/10.1073/pnas.95.14.7987
  52. IARC (International Agency for Research on Cancer). Chromium, Nickel, and Welding, IARC Monographs on the Evaluation of Carcinogenic Risks of Chemicals to Humans, World Health Organization, Lyon, 1990; 49: 49-25
  53. Iwitzki F, Schlepegrell R, Eichhorn U and Hartwig A. NickeI (II) inhibits the repair of O6-methylguanine in mammalian cells, Arch. Toxicol. 1998; 72: 681-689 https://doi.org/10.1007/s002040050561
  54. Kaaber K, Veinin NK and Tjell JC. Low nickel diet in the treatment of patients with chronic nickel dermatitis, British J. Dermatol. 1978; 98: 197-210 https://doi.org/10.1111/j.1365-2133.1978.tb01622.x
  55. Kargacin B, Klein CB and Costa M. Mutagenic responses of nickel oxides and nickel sulfides in Chinese hamster V79 cell lines as the xanthine-guanine phosphoribosyl transferase locus, Mutat. Res. 1993; 300: 63-72 https://doi.org/10.1016/0165-1218(93)90141-Y
  56. Kasprzak KS, Quander RV and Poirier LA. Effects of calciurn and magnesium salts on nickel subsulfide carcinogenicity in Fischer rats, Carcinogenesis 1985; 6: 1161-1166 https://doi.org/10.1093/carcin/6.8.1161
  57. Kasprzak KS and Waalkes MP. The role of calcium, magne-sium, and zinc in carcinogenesis, in: Poirier LA, New-berne PM, Pariza MW (Eds), Essential Nutrients in car-cinogenesis, Plenum Press, new York 1986; 497-515
  58. Kasprzak KS and Hernandez L. Enhancement of hydrox-ylation and deglycosylation of 2' -deoxyguanisine by carcinogenic nickel compounds, Cancer Res. 1989; 49: 5964-5968
  59. Kasprzak KS, Diwan BA, Konishi N, Misra M and Rice JM. Initiation by nickel acetate and promotion by sodium barbital of renal cortical epithelial tumors in male F344 rats, carcinogenesis 1990; 11:647-652 https://doi.org/10.1093/carcin/11.4.647
  60. Kasprzak K.S. The role of oxidative damage in metal carcinogenicity, Chem. Res. Toxicol. 1991; 4: 604-615 https://doi.org/10.1021/tx00024a002
  61. Kasprzak KS. Possible role of oxidative damage in metal-induced carcinogenesis. Cancer Invest 1995: 13: 411-430 https://doi.org/10.3109/07357909509031921
  62. Kasprzak KS. Oxidative DNA damage in metal-induced carcinogenesis, in: Chang LW, Magos L, Suzuki T (Eds.), Toxicology of Metals, Lewis Publishers, Boca Raton, 1996; 299-320
  63. Kerckaert GA, LeBoeuf RA and Isfort RJ. Use of the Syrianhamster embryo cell transformation assay for determining the carcinogenic potential of heavy metal compounds, Fundam. Appl. Toxicol. 1996; 34: 67-72 https://doi.org/10.1006/faat.1996.0176
  64. Klein CB. Frenkel K and Costa M The role of oxidative processes in metal carcinogenesis, Chem. Res. Toxicol. 1991;4:592-604 https://doi.org/10.1021/tx00024a001
  65. Knopfel M, Schulthess G, Funk F and Hauser H. Characterization of an integral protein of the brush border membrane mediating the transport of divalent metalions, Biophys. J. 2000; 79: 874-884 https://doi.org/10.1016/S0006-3495(00)76343-0
  66. Kouzarides T. Transcriptional control by the retinoblastoma protein, Semin. Cancer Biol. 1995; 6: 91-98 https://doi.org/10.1006/scbi.1995.0012
  67. Kuehn K, Fraser CB and Sunderman Jr. FW. Phargocytosis of paniculate nickel compounds by rat peritoneal macrophages in vitro, Carcinogenesis 1982; 3: 321-326 https://doi.org/10.1093/carcin/3.3.321
  68. Kuehn K and Sunderman Jr. FW. Dissolution half-times of nickel compounds in water, rat serum, and renal cytosol, J. Inorg. Biochem. 1982; 17: 29-39 https://doi.org/10.1016/S0162-0134(00)80227-5
  69. Leach Jr. CN, Linden J, Hopfer SM, Chrisostomo C and Sunderman Jr. FW. Serum nickel concentrations in patients with unstable angina and myocardial infarction, Annals Cli. Lab. Sciences 1984; 14: 414-415
  70. Lee WH, Bookstein R and Lee EY. Studies on the human retinoblastoma susceptibility gene, J. Cell. Biochem. 1988, 38: 213-227 https://doi.org/10.1002/jcb.240380309
  71. Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J, Dowjat K, Zhitkovich A, Christie NT and Costa M. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens, Mol. Cell. Biol. 1995; 15: 2547-2557
  72. Li W, Zhao Y and Chou IN. Alterations in cytoskeketal protein sulfhydryls and cellular glutathione in cultured cells exposed to cadmium and nickelions, Toxicology 1993, 77: 65-79 https://doi.org/10.1016/0300-483X(93)90138-I
  73. Lin X, Dowjat WK and Costa M. Nickel-induced transformation of human cells causes loss of the phospho-rylation of the retinoblastoma protein, Cancer Res. 1994. 54: 2751-2754
  74. Maehle L, Metcalf RA, Ryberg D and Bennett WP. Altered p53 gene structure and expression in human epithelial cells after exposure to nickel, Cancer Res. 1992; 52: 218-221
  75. Mas A, Holt D and Webb M. The acute toxicity and teratogenicity of nickel in pregnant rats, Toxicol 1985; 35: 47-57 https://doi.org/10.1016/0300-483X(85)90131-3
  76. Mayer C, Klein RG, Wesch H and Schmezer P. Nickel subsulfide is genotoxic in vitro but shows no mutagenic potential in respiratory tract tissues of Big Blue rats and Muta Mouse mice in vivo after inhalation, Mutat. Res. 1998; 420: 85-98
  77. McConnell LH, Fink JN, Schlueter DP and Schmidt Jr. MG Asthma caused by nickel sensitivity, Annala Internal Med.1973; 78: 888-890 https://doi.org/10.7326/0003-4819-78-6-888
  78. McGregor DB, Baan RA, Partensky C, Rice JM and Wilbourn JD. Evaluation of the carcinogenic risks to humans associated with surgical implants and other foreign bodiesa report of an IARC Monographs Programme Meeting, Eur. J. Cancer 2000; 36: 307-313 https://doi.org/10.1016/S0959-8049(99)00312-3
  79. Meyer M, Schreck R and Baeuerle PA. $H_2O_2$ and antiox-idants have opposite effects on activation of $NF_kB$ and AP-1 in intact cells: AP-1 as secondary antioxidant-responsive factor, EMBO. J. 1993; 12: 2005-2015
  80. Miki H, Kasprzak KS, Kenney S and Heine UL. Inhibition of intercellular communication by nickel (II): antago-nistic effect of magnesium, carcinogenesis 1987; 8: 1757-1760 https://doi.org/10.1093/carcin/8.11.1757
  81. Miller AC, Blakely WF, Livengood D, Whittaker T and Hsu H. Transformation of human osteoblast cells to the tumorigenic phenotype by depleted uranium-uranyl chloride, Environ. Health Perspect. 1998; 106: 465-471 https://doi.org/10.2307/3434178
  82. Muller-Fassbender M, Elsenhans B, McKie AT and Schumann K. Different behaviour of 63Ni and 59Fe during absorption in iron-deficient and iron-adequate jejunal rat segments ex vivo, Toxicology 2003; 185: 141-153 https://doi.org/10.1016/S0300-483X(02)00600-5
  83. Nackerdien Z, Kasprzak KS, Rao G, Halliwell B and Dizdaroglu M. Nickel (II)-and cobalt (II)-dependent damage by hydrogen peroxide to the DNA bases in isolated human chromatin, Cancer Res. 1991; 51: 5837-5842
  84. National Academy of Sciences (NAS). Nickel, Medical and Biologic Effects of Environrnental Pollutants, NAS press, Washington DC, 1975; 1 -277
  85. Nicotera P and Orrenius S. The role of calcium in apoptosis, Cell Calcium 1988; 23: 173-180 https://doi.org/10.1016/S0143-4160(98)90116-6
  86. Oller, AR, Costa M and Oberdorster G. Carcinogenicity assessment of selected nickel compounds, Toxicol. Appl. Pharmacol. 1997; 143: 152-166 https://doi.org/10.1006/taap.1996.8075
  87. Patierno SR, Dirscherl LA and Xu J. transformation of rat tracheal epithelial cells to immortal growth variants by particulate and soluble nickel compounds, Mutat. Res. 1993: 300: 179-193 https://doi.org/10.1016/0165-1218(93)90049-J
  88. Pikalek P and Necasek J. The mutagenic activity of nickel in Corynebacterium sp., Folia Microbiol (Praha) 1983; 28: 17-21 https://doi.org/10.1007/BF02877379
  89. Pott F, Rippe M, Roller M and Csicsaky M, Rosenbruch. Carcinogenicity of nickel compounds and nickel alloys in rats by intraperitoneal injection, in Nickel and Human Health: Current Perspectives, Wiley, New York, 1992; 491-502
  90. Requena JR, Chao CC, Levine LR and Stadtman ER. Glutamic and aminoadipic semialdehydes are the main carbonyl products of metal-catalyzed oxidation of proteins, Proc. Natl. Acad. Sci. USA 2001; 98: 69-74 https://doi.org/10.1073/pnas.011526698
  91. Rivedal E and Sanner T. Metal salts as promoters of in vitro morphological transformation of hamster embryo cells initiated by benzo[$\alpha$]pyrene, Cancer Res. 1981; 41: 2950-2953
  92. Rosen LB, Ginty DD and Greenberg ME. Calcium regulation of gene expression, Adv. Second Messenger Phospho-protein Res. 1995; 30: 225-253 https://doi.org/10.1016/S1040-7952(05)80009-6
  93. Rosetto FE, Turnbull JD and Nieboer E. Characterization of nickel-induced mutations, Sci. Total Environ. 1994; 148:201-206 https://doi.org/10.1016/0048-9697(94)90397-2
  94. Ryan HE, Lo J and Johnson RS. HIF-1 alpha is required for solid tumor formation and embryonic vascularization, EMBO J. 1998; 17: 3005-3015 https://doi.org/10.1093/emboj/17.11.3005
  95. Sahu RK, Katsifis SP, Kinney PL and Christie NT. Effects of nickel sulfate, lead sulfate, and sodium arsenite alone and with UV light on sister chromatid exchanges in cultured human lymphocytes, J. Mol. Toxicol. 1989; 2: 129-136
  96. Sainte-Marie J, Lafont V, Pecheur EI and Bienvenue A. Transferrin receptor functions as a signal-transduction molecule for its own recycling via increases in the internal $Ca^2^+$ concentration, Eur. J. Biochem. 1997; 250: 689-697 https://doi.org/10.1111/j.1432-1033.1997.00689.x
  97. Salnikow K, Cosentino S, Klein C and Costa M. Loss of thrombospondin transcriptional activity in nickel-transformed cells, Mol. Cell. Biol. 1994; 14: 851-858
  98. Salnikow K, Wang S and Costa M. Induction of activating transcription factor I by nickel and its role as a negative regulator of thrombospondin I gene expression, Cancer Res.1997; 57: 5060-5066
  99. Salnikow K, An WG, Melillo G, Blagosklonny MV and Costa M. Nickel-induced transformation shifts the balance between HIF-1$\alpha$ and p53 transcription factors, Carcinogenesis 1999a; 20: 1819-1823 https://doi.org/10.1093/carcin/20.9.1819
  100. Salnikow K, Kluz T and Costa M. Role of $Ca^2^+$ in the regulation of nickel-inducible Cap43 gene expression, Toxicol. Appl. Pharmacol. 1999b; 160: 127-132 https://doi.org/10.1006/taap.1999.8759
  101. Salnikow K, Blagosklonny M, Ryan H, Johnson R and Costa M. Carcinogenic nickel induces genes involved with hypoxic stress, Cancer Res. 2000a; 60: 38-41
  102. Salnikow K, Su W, Blagosklonny MV and Costa M. Carcinogenic metals induce hypoxia-inducible factor-stimulated transcription by reactive oxygen species-independent mechanism, Cancer Res. 2000b; 60: 3375-3378
  103. Savory J, Brown S, Bertholf R, Ross R, Savory MG and Wells MR. Serum and lymphocyte nickel and aluminum concentrations in patients with extracorporeal hemodial-ysis, Annals Cli. Lab. Science 1984; 14: 413-414
  104. Schroeder HA and Mitchener M. Toxic effects of trace elements on the reproduction of mice and rats, Arch. Environ. Health 1971, 23: 102-106 https://doi.org/10.1080/00039896.1971.10665963
  105. Semenza GL. Regulation of mammalian $O_2$ homeostasis by hypoxia-inducible factor 1, Annu. Rev. Cell. Dev. Biol. 1999; 15:551-578 https://doi.org/10.1146/annurev.cellbio.15.1.551
  106. Sen P and Costa M. Incidence and localization of sister chromatid exchanges induced by nickel and chromium compounds, Cancer Res. 1985; 7: 1527-1533
  107. Sen P, Conway K and Costa M. Comparison of the localization of chromosome damage induced by calcium chromate and nickel compounds, Cancer Res. 1987; 47: 2142-2147
  108. Shaywitz AJ, Greenberg ME. CREB: a stimulus-induced transcription factor activated by a diverse array of extracellular signals, Annu. Rev. Biochem. 1999; 68: 821-861 https://doi.org/10.1146/annurev.biochem.68.1.821
  109. Shiao YH, Lee SH and Kasprzak KS. cell cycle arrest, apoptosis and p53 expression in nickel (II) acetate-treated Chinese hamster ovary cells, Carcinogenesis 1998; 19: 1203-1207 https://doi.org/10.1093/carcin/19.7.1203
  110. Shibayama N, Morimoto H and Kitagawa T. Properties of chemically modified Ni (II)-Fe (II) hybrid hemoglobins. Ni (II) Protoporphyrin IX as a model for a permanent deoxy-heme, J. Mol. Biol. 1986; 192: 331-336 https://doi.org/10.1016/0022-2836(86)90368-2
  111. Sirover MA and Loeb LA. Infidelity of DNA synthesis in vitro: screening for potential metal mutagens and carcinogens, Science 1976; 194: 1434-1436 https://doi.org/10.1126/science.1006310
  112. Smith JB, Dwyer SD and Smith L. Cadmium evokes inosi-tol polyphosphate firmation and calcium mobilization. Evidence for a cell surface receptor that cadmium stimulates and zinc antagonizes, J. Biol. Chem. 1989; 264: 7115-7118
  113. Sunderman Jr. FW. Recent research on nickel carcinogenesis, Environ. Health Perspec. 1981; 40: 131-141 https://doi.org/10.2307/3429227
  114. Sunderman Jr. FW. Potential toxicity from nickel contamination of intravenous fluids, Annals Cli. Lab. Science 1983; 13: 1-4
  115. Sunderman Jr. FW. Carcinogenicity of nickel compounds in animals, in: Sunderman Jr. (Ed.), Nickel in the Human Environment, IARC Scientific Publications, Lyon, 1984; 53: 127-142
  116. Sunderman Jr. FW. Sources of exposure and biological effects of nickel, in Environmental Carcinogens- Selected methods of Analysis, IARC Publ. 1986; 71: 79-92
  117. Sunderman Jr. FW. Morgan LG, Andersen A, Ashley D and Forouhar FA. Histopathology of sinonasal and lung cancers in nickel refinery workers, Ann. Chn. Lab. Sci. 1989; 19: 44-50
  118. Sunderman Jr. FW. Carcinogenicity of metal alloys in orthopedic prostheses: clinical and experimental studies, Fundam. Appl. Toxicol. 1989; 13: 205-216 https://doi.org/10.1016/0272-0590(89)90257-1
  119. Swierenga SHH, Whitfield JF, Boynton AL. Age-related and carcinogen-induced alterations of the extracellular growth factor requirements for cell proliferation in vitro, J. Cell. Physiol 1978; 94: 171-180 https://doi.org/10.1002/jcp.1040940206
  120. Talkvist J, Wing AM and Tjalve H. Enhanced intestinal nickel absorption in iron-deficient rats, Pharmacol. Toxicol 1994, 75: 244-249 https://doi.org/10.1111/j.1600-0773.1994.tb00355.x
  121. Tallkvist J and Tjalve H. Transport of nickel across mono-layers of human intestinal Caco-2 cells, Toxicol. Appl. Pharmacol. 1998; 151: 117-122 https://doi.org/10.1006/taap.1998.8453
  122. Tkeshelashvili LK, Reid TM, McBride TJ and Loeb LA. Nickel induces a signature mutation for oxygen free radical damage. Cancer Res. 1993; 53: 4172-4174
  123. Trott DA, Cuthbert AP, Overell RW, Russo I and Newbold RF. Mechanisms involved in the immortalization of mammalian cells by ionizing radiation and chemical carcinogens, Carcinogenesis 1995; 16: 193-204 https://doi.org/10.1093/carcin/16.2.193
  124. Weast, editor. Handbook of chemistry and physics, 52nd ed. Cleveland: The Chemical Rubber Co., 1971
  125. Webster JD, Parker TF, Alfrey AC, Smythe WR, Kubo H, Neal G and Hull A. Acute nickel intoxication by dialysis, Ann. Internal Med. 1980; 92: 631-633 https://doi.org/10.7326/0003-4819-92-5-631
  126. Weghorst CM, Dragnev KH, Buzard GS, Thorne KL and Rice JM. Low incidence of point mutations detected in the p53 tumor suppressor gene from chemically induced rat renal mesenchymal tumors, Cancer Res. 1994; 154: 215-219
  127. Zaroogian G, Yevich P and Anderson S. Effect of selected inhibitiors on cadmium, nickel, and benzo[$\alpha$]pyrene uptake into brown cells of Mercenaria mercenaria, Marine Environ. Res. 1993; 35: 41-45 https://doi.org/10.1016/0141-1136(93)90011-N
  128. Zhou D, Salnikow K and Costa M. Cap43, a novel gene specifically induced by $Ni^2^+$ compounds, Cancer Res. 1998; 58: 2182-2189
  129. Zienolddiny S, Ryberg D and Haugen A. Induction of microsatellite mutations by oxidative agents in human lung cancer cell lines, Carcinogenesis 2000; 1521-1526