Effects of Biomass Concentration and Sludge Loading Rate on Bioactivity and Membrane Fouling in a Submerged Membrane Bioreactor System

침지형 분리막 생물반응기에서 미생물 농도와 슬러지 부하에 따른 미생물 활성 변화와 막오염 특성 연구

  • 탁태문 (서울대학교 생물자원공학부) ;
  • 배태현 (서울대학교 생물자원공학부) ;
  • 장경국 (서울대학교 생물자원공학부)
  • Published : 2004.12.01

Abstract

In this study, membranes were coupled to a sequencing batch reactor for simultaneous removal of organic matter and nitrogen, and the influences of MLSS (mixed liquor suspended solid) concentration and the sludge loading rate on membrane fouling and bioactivity were investigated. The amount of membrane fouling slightly increased with MLSS concentration at both non-aeration and aeration conditions, but effect of MLSS concentration was more significant at aeration condition. Although the effect of MLSS concentration on membrane fouling was found to be insignificant at low concentration level, extremely low sludge loading, which were generated by the maintenance of large amount of biomass in the reactor, caused severe membrane fouling, and air scouring effect decreased significantly in this condition. Specific bioactivity was constantly reduced as sludge loading rate decreased. In spite of high MLSS concentration over 17,000 mg/L, the activity of the reactor decreased at extremely low sludge loading rate presumably due to the lower oxygen transfer and the competition of biomass to deficient substrate.

유기물과 질소를 동시에 제거하기 위하여 연속회분식으로 운전한 MBR (membrane bioreactor)시스템에서 미생물농도와 슬러지 부하량이 막오염과 미생물 활성에 미치는 영향을 살펴보았다. 막오염은 MLSS (mixed liquor suspended solid) 농도 증가에 따라 조금씩 증가하는 경향을 보였고, 그 효과는 비포기 조건보다 포기 조건에는 좀더 두드러지게 나타났다. MLSS 농도는 막오염에 직접적인 커다란 영향을 주지는 않으나, 지나치게 높은 MLSS에서 유도되는 낮은 슬러지 부하에서는 막오염이 크게 증가하는 현상이 발견되었고, 이러한 조건에서는 포기에 의한 막 세척 효과도 크게 줄어들었다. 미생물의 개별 활성도는 슬러지 부하가 감소할수록 지속적으로 감소하는 경향을 나타내었다 반응조 전체 활성도 또한 17,000 mg/L 이상의 높은 MLSS로부터 유도되는 낮은 슬러지 부하율에서는 높은 미생물 농도에도 불구하고 오히려 감소했는데 이는 기질 부족으로 인한 경쟁으로 활성도가 떨어지고, 용액의 점성 증가로 인해 산소 전달율이 저하되었기 때문이다.

Keywords

References

  1. J. Manem and R. Sanderson, Water Treatment Membrane Process, Chapter 17, AWWA Research Foundation, McGraw-Hill (1996)
  2. J. G. Choi, T. H. Bae, J. H. K, T. M Tak, and A. A. Randall, The behavior of membrane fouling initiation on the crossflow membrane bioreactor system J. Membr. Sci., 203, 103-113 (2002)
  3. S. P. Hong, T. H. Bae, T. M. Tak, S. Hong, and A. Randall, Fouling control in activated sludge submerged hollow fiber membrane bioreactor, Desalination, 143, 219-228 (2002)
  4. E. Tardieu, A. Grasmick, V. Geaugey, and J. Manem, Influence of hydrodynamics on fouling velocity in a recirculated MBR for wastewater treatment, J. Membr. Sci., 156, 131-14 (1999)
  5. T. Ueda, K. Hata and Y. Kikuoka, Effects of aeration on suction pressure in a submerged membrane bioreactor, Water Res., 31, 489-494 (1997)
  6. T. H Bae, S. S. Han, and T. M Tak, Membrane sequencing batch reactor system for treatment of dairy industry wastewater, Process Biochemistry, 39, 221-231 (2003)
  7. J. M Lee, W. Y Ahn, and C. H Lee, Comparison of the filtration characteristics between attached and suspended growth microorganism in submerged membrane bioreactor, Water Res., 35, 2435-2445 (2001)
  8. I. S. Chang and C. H. Lee, Membrane filtration characteristics in membrane-coupled activated sludge system the effect of physiological states of activated sludge on membrane fouling, Desalination, 120, 221-233 (1998)
  9. R. Witzig, W. Manz, S. Rosenberger, V. Kruger, M. Kraume, and U. Szewzyk, Microbiological aspects of a bioreactor with submerged membranes for aerobic treatment of municipal wastewater, Water Res., 36, 394-402 (2002)
  10. S. Rosenberger, V. Kruger, R. Witzig, W. Manz, U. Szewzyk, and M. Kraume, Performance of a bioreactor with submerged membranes for aerobic treatment of municipal waste water, Water Res., 36, 413-420 (2002)
  11. H. S. Shin and S. T. Kang, Characteristics and fates of soluble microbial products in ceramic membrane bioreactor at various sludge retention time, Water. Res., 37, 121-127 (2003)
  12. W. T Lee, S. T. Kang, and H. S. Shin, Sludge characteristics and their contribution to micro-filtration in submerged membrane bioreactors, J. Membr. Sci., 216, 217-227 (2003)
  13. American Public Heaith Association, Standard Methods for the Examination of Water and Wastewater, 20th Ed., Washing D.C. (1998)
  14. M. Mulder, Basic principles of membrane thchnology, Kluwer Academic Publishiers, London (1996)
  15. E. B. Muller, A. H. Stouthamer, H. W. van Verseveld, and D. H. Eikelboom, Aerobic domestic waste water treatment in a pilot plant with complete sludge retention by cross-flow filtration, Water Res. 29,1179-1189 (1995)
  16. C. W. Randall, J. L. Barnard, and H. D. Stensel, Design and retrofit of wastewater treatment plants for biological nutrient removal, Technomic Publishing, Lancaster, Pennsylvania (1992)
  17. T. Ueda, K. Hata, and Y. Kikuoka, Treatment of domestic sewage from rural settlements by a membrane bioreactor, Water Sci. Technol., 34, 189-19 (1996)