DOI QR코드

DOI QR Code

Molecular Cloning and Characterization of Outer Envelope Membrane Protein from Salicornia herbacea

퉁퉁마디로부터 색소체 외막 단백질 유전자의 분리 및 발현분석

  • 네티 엘마와티 (경상대학교 대학원 응용생명과학부, 경상대학교 PMBBRC) ;
  • 차준영 (경상대학교 대학원 응용생명과학부, 경상대학교 PMBBRC) ;
  • 양영실 (경상대학교 대학원 응용생명과학부, 경상대학교 PMBBRC) ;
  • 정민희 (경상대학교 대학원 응용생명과학부, 경상대학교 PMBBRC) ;
  • 신동진 (경상대학교 대학원 응용생명과학부, 경상대학교 PMBBRC) ;
  • 이병현 (경상대학교 대학원 응용생명과학부, 경상대학교 PMBBRC) ;
  • 이곤호 (경상대학교 대학원 응용생명과학부, 경상대학교 PMBBRC) ;
  • 손대영 (경상대학교 대학원 응용생명과학부, 경상대학교 PMBBRC)
  • Published : 2004.12.01

Abstract

Complementary DNA encoding chloroplast outer envelope membrane protein (OEP) from the halophyte Salicornia herbacea has been cloned and sequenced. The full length cDNA is 596 bp and encodes a polypeptide of 91 amino acid residues with a molecular mass of 8.9 kDa. The expression level of ShOEP increased by salt, drought and ABA treatments. ShOEP expression was largely induced in roots and shoots by high salts. The biological function of ShOEP was examined by yeast complementation. ShOEP can suppress Na$^{+}$ sensitivity of yeast mutant (cnb$\Delta$) in the presence of salt. These results suggest that ShOEP is a salt inducible gene and may have functions in the regulation of plant salt stress.ant salt stress.

Differential display 방법으로 NaCl에 의하여 발현이 증가되는 cDNA들을 분리하였으며 그중 하나가 식물유래의 outer envelope membrane protein과 높은 유사성을 보였으므로 이를 ShOEP로 명명하였다. ShOEP는 1293 bp 길이에 359개의 아미노산으로 구성된 open reading frame을 포함하고 있으며, 이로부터 추정되는 분자량은 8.9 kDa이었다. ShOEP 단백질은 애기장대의 OEP와는 40.6%, 시금치와는 38%의 유사성을 나타내었다. Northern 분석결과, ShOEP 유전자는 NaCl의 농도가 증가함에 따라 발현량이 급격히 증가하는 것으로 나타났다. 염생식물인 퉁퉁마디의 OEP는 PEG에 의하여 발현이 증가하는 반면 비염생식물인 애기장대의 OEP는 큰 차이를 보이지 않았다. 효모 complementation 실험결과 ShOEP는 NaCl에 특이적이었으며 식물의 염분스트레스 내성 기작에 직접적으로 관여하고 있음을 알 수 있었다.

Keywords

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215: 403-410 https://doi.org/10.1016/S0022-2836(05)80360-2
  2. Ausubel FM, Brent R, Kingstone RE, Moore DD, Seidman JG, Smith JA, Struhl K (1989) Current protocols in molecular Biology. Greene Publishing Associates and Wiley-Interscience, New York
  3. Binzel ML, Hess FD, Bressan RA, Hassegawa PM (1988) Intracellular compartmentation of ions in salt adapted tobacco cells. Plant Physiol 86: 607-614 https://doi.org/10.1104/pp.86.2.607
  4. Boyer JS (1982) Plant productivity and environment. Science 218: 443-448 https://doi.org/10.1126/science.218.4571.443
  5. Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81: 1991-5 https://doi.org/10.1073/pnas.81.7.1991
  6. Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4: 215-223 https://doi.org/10.1046/j.1365-313X.1993.04020215.x
  7. Ferro M, Salvi D, Rolland HR, Vermat T, Berny DS, Grunwald D, Garin J, Joyard J, Rolland N (2002) Integral membrane proteins of the chloroplast envelope: Identification and subcellular localization of new transporters. Proc Natl Acad Sci USA 99: 11487-11492 https://doi.org/10.1073/pnas.172390399
  8. Fischer K, Weber A, Arbinger B, Brink S, Eckerskorn C, Flugge UI (1994) The 24 kDa outer envelope membrane protein from spinach chloroplasts: molecular cloning, in vivo expression and import pathway of a protein with unusual properties. Plant Mol Biol 25: 167-177 https://doi.org/10.1007/BF00023235
  9. Flgge UI (2000) Transport in and out of plastids: does the outer envelope membrane control the flow? Trends Plant Sci. 5(4): 135-137 https://doi.org/10.1016/S1360-1385(00)01578-8
  10. Garbarino J, DuPont FM (1989) Rapid induction of $Na^{+}/H^{+} exchange activity in barley root tonoplast. Plant Physiol 89: 1-4 https://doi.org/10.1104/pp.89.1.1
  11. Hanson AD, Rathinasabapathi B, Rivoal J, Burnet M, Dillon MO, Gage DA (1994) Osmoprotective compounds in the Plumbaginaceae: a natural experiment in metabolic engineering of stress tolerance. Proc Natl Acad Sci USA 91: 306-310 https://doi.org/10.1073/pnas.91.1.306
  12. Linke D, Frank J, Holzwarth JF, Soll J, Boettcher C, Fromme P (2000) In vitro reconstitution and biophysical characterization of OEP16, an outer envelope pore protein of pea chloroplasts. Biochemistry 39: 11050-11056 https://doi.org/10.1021/bi001034m
  13. Reviron MP, Vartanian N, Sallantin M, Huet JC, Pernollet JC, Vienne D (1992) Characterization of a novel protein induced by progressive or rapid drought and salinity in Brassica napus leaves. Plant Physiol 100: 1486-1493 https://doi.org/10.1104/pp.100.3.1486
  14. Sambrook J, Russell DW (2000) Molecular cloning: A laboratory manual, Ed 3, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York
  15. Shure M, Wessler S, Fedoroff N (1983) Molecular identification and isolation of the waxy locus in maize. Cell 35: 225-33 https://doi.org/10.1016/0092-8674(83)90225-8

Cited by

  1. Effect of Insoluble Dietary Fiber Extracted from Salicornia herbacea L. on Large Intestinal Function in Rats vol.46, pp.5, 2014, https://doi.org/10.9721/KJFST.2014.46.5.648
  2. Growth Inhibitory and Quinone Reductase Induction Activities of Salicornia herbacea L. Fractions on Human Cancer Cell Lines in vitro vol.37, pp.2, 2008, https://doi.org/10.3746/jkfn.2008.37.2.148
  3. Acute Oral Toxicity ofSalicornia herbaceaL. Extract in Mice vol.22, pp.2, 2016, https://doi.org/10.15616/BSL.2016.22.2.46
  4. Chemical Properties and Nitrite Scavenging and Acetylcholinesterase Inhibitory Activities from Salicornia herbaciea Seed vol.28, pp.6, 2013, https://doi.org/10.7841/ksbbj.2013.28.6.372