DOI QR코드

DOI QR Code

Effect of Small Black Soybean Powder on Blood Glucose and Insulin Sensitivity in Streptozotocin-Induced Diabetic Rats

Streptozotocin-유도 당뇨모델을 이용한 쥐눈이콩 분말의 혈당강하 및 인슐린 감수성의 효과

  • 이대훈 (원광대학교 생명과학부) ;
  • 곽동훈 (원광대학교 생명과학부) ;
  • 김성민 (원광대학교 생명과학부) ;
  • 주은진 (원광대학교 생명과학부) ;
  • 최한길 (원광대학교 생명과학부) ;
  • 김옥희 (영산식품) ;
  • 황진봉 (한국식품연구원 분석평가팀) ;
  • 배남궁 (한국식품연구원 분석평가팀) ;
  • 정규용 (원광대학교 의과대학 약리학교실) ;
  • 한진철 (대구대학교 생명공학전공) ;
  • 박흠대 (대구대학교 생명공학전공) ;
  • 추영국 (원광대학교 생명과학부)
  • Published : 2004.12.01

Abstract

Beans are acknowledged to be food resources, which have more abundant proteins and fats. The constituent parts of beans (i.e. aspartic aid, glycine, arginine) are effective against diabetes, and dietary fiber contained in the beans has an important property to maintain insulin sensitivity. Based on these, using streptozotocin (STZ)-induced diabetic rats, this study examined how the rat-eye soybean, which is principal products of the Imsil province, is effective to attenuate and/or prevent the development of diabetes mellitus. We divided rats into the non-diabetic and diabetic group, and diabetic group was further subdivided into six experimental groups [DC, diabetic control; DI, diabetes with insulin treatment (4∼6 IU/rat); DB, diabetes with black bean; DY, diabetes with yellow soybean; DS, diabetes with rat-eye soybean; DSS, diabetes with vinegar-fermented rat-eye soybean. All bean treatment (1.5 mg/l g body weight).]. Food efficiency ratio (FER), body weight and insulin sensitivity in diabetic rats were significantly reduced compared to those in normal control animals. These reductions were obviously attenuated by administration of a variety of beans used in this study (20∼30%), and the recovery effects were comparable to the results obtained by insulin treatment. Taken together, this study suggests that all beans used may have an essential property to improve and/or attenuate the development of diabetes mellitus in rats.

본 연구에서는 임실특산물인 쥐눈이콩및 쥐눈이식초콩의 혈당강하 및 인슐린 감수성에 대한 효과를 검정콩, 메주콩과 비교하여 조사하였다. 식이물질의 성분검사 결과 쥐눈이콩과 쥐눈이식초콩이 검정콩과 메주콩에 비하여 당뇨개선의 효과가 있는 여러 아미노산 및 식이섬유 함량이 유의적으로 높게 측정 되었다. 실험 을 위 해 평균체중 195.5$\pm$0.98 g의 숫컷쥐를 정상군(NC), 당뇨대조군(DI, DC), 검정콩식이군(DB), 메주콩식이군(DY), 쥐눈이콩식이군(DS), 쥐눈이식초콩식이군(DSS)으로 총 7개군으로 나누어 해당식이첨가 시료로 4주간 사육하였다. 당뇨유발을 위 해 STZ를 1회 (70 mg/kg/rat) 투여하였으며 그 결과 체중변화는 당뇨대조군(DC)에서 21.12 g감소함에 반하여 각각의 시료를 첨가식이한 당뇨실험군에서 특히 쥐눈이콩(DS)과 쥐눈이식초콩(DSS) 식이군은 높은 식이 이용 효율(FER)을 보여 각각 14.73$\pm$3.65 g 및 16.71$\pm$5.54 g의 몸무게 증가를 보였다. 음용수 및 뇨량의 측정 결과 역 시 당뇨실험군에서 유의적인 감소(p<0.05)를 보였다. 혈당량은 당뇨대조군(DC)에 비하여 검정콩(DH),메주콩(DY), 쥐눈이콩(DS), 쥐눈이식초콩(DSS) 식이군이 각각 17.9%, 16.9%, 10.35%, 19.54%씩 유의하게 감소하였으나 정상대조군(NC)보다는 높은 수치를 나타내었다. 또한 당뇨쥐의 인슐린 감수성에 대한 관찰결과 당뇨대조군 중 인슐린 무처지군(DC)에 비하여 모든 당뇨실험군에서 높은 값을 보였다. 결론적으로 임실산 쥐눈이콩과 쥐눈이식초콩은 당뇨쥐의 혈당강하 및 인슐린감수성에 대한 개선작용의 가능성이 있으므로 당뇨합병증 예방의 기능성 식품으로 기대된다.

Keywords

References

  1. Kim YI, Choi CS, Kim SW. 1998. Prevalence of diabetes mellitus and impaired glucose tolerance in Korean adults living in Jungup district. J Korean Diabetes Assoc 22: 363-371
  2. Kim JY, Park JY, Lee KU. 1994. Diabetes and tranditional medicine effect of several traditional drug on the plasma glucose levels in streptozotocin-induced diabetic rat. J Korean Diabetes Assoc 18: 377-380
  3. Souci SW, Fachmann W, Kraut H. 1994. Food composition and nutrition table. CRC Press, NY, USA. p 770-771
  4. Kwon TW. 2000. Soybean in the 21st century. Korea Soybean Digest 17: 1-4
  5. Fiat AM, Migliore-Samour D. 1993. Biologlcally active peptides from milk proteins with emphasis on two examples concerning antitrombotic and immuno modulating activitises. J Dairy Sci 76: 301-310 https://doi.org/10.3168/jds.S0022-0302(93)77351-8
  6. Bae EA, Moon GS. 1997. A study on the antioxidative activities of Korean soybean. J Korean Soc Food Sci Nutr 26: 203-208
  7. Abrams JJ, Ginberg H, Grundy SM. 1982. Metabolism of cholesterol and plasma triglycerides in non-ketotic diabetes mellitus. Diabetes 31: 903-910 https://doi.org/10.2337/diabetes.31.10.903
  8. Prichard KA, Patel ST, Karper CW, Newman HAI. 1986. Increased Iipoprotein lipase activity in livers of diabetic rat fed high dietary vitamin E. Diabetes 35: 278-281 https://doi.org/10.2337/diabetes.35.3.278
  9. Behren WA, Madere R. 1991. Vitamin C and vitamin E status in the spontaneously diabetics BB rat before the onset of diabetes. Metabolism 40: 72-76 https://doi.org/10.1016/0026-0495(91)90195-3
  10. Richard MJ, Guiraud P, Meo J, Favier A. 1992. High performance liquid chromatographic separation of malondialdehyde thiobarbituric acid adduct in biological materials (plasma and human cells) using a commercially available reagent. J Chromatogr 577: 9-18 https://doi.org/10.1016/0378-4347(92)80593-F
  11. Lissi E, Salim-Hanna M, Pascual C, del Castillo MD. 1995. Evaluation of tatal antioxidant potential (TRAP) and total antioxidant reactivity from luminal-emhanced chemiluminescence measurement. Free Redic Bio Med 18: 153-158 https://doi.org/10.1016/0891-5849(94)00117-3
  12. Ghiselli A, Serafini M, Maiani G, Azzini E. 1995. A fluorescence-based method for measuring total plasma antioxidant capability. Free Redic Biol Med 18: 29-36 https://doi.org/10.1016/0891-5849(94)00102-P
  13. Sa JH, Shin IC, Jeong KJ, Shin TH. 2003. Antioxidative activity and chemical characteristics from different organs of small black soybean (Yak-Kong) grown in the area of Jungsun. Korean J Food Sci Technol 35: 309-315
  14. Jeong HJ, Jo HB, Kim AK, Park KA, Son YJ, Lee KK. 1998. Studies on tannin contents and physiological function of commercial persimmon vinegars. Report of S.I.H.E. 33: 114-118
  15. Yeo KE, Choi HS, Kim DW, Kim JS, Kim WJ. 2003. Effect of acidification on physical and organoleptic properties of soybean. J Korean Food Sci Technol 16: 410-416
  16. Gold G, Manning M, Heldt A, Nowlain R, Pettit JG, Grodsky GM. 1981. Diabetes induced with multiple subdiabetogenic doses of streptozotocin. Diabetes 30: 634-638 https://doi.org/10.2337/diabetes.30.8.634
  17. Junod A, Lambert AE, Stauffacher W, Renold AE. 1969. Diabetogenic antion or streptozotocin: relationship of dose to metabolic response. J Clin Invert 48: 2129-2139 https://doi.org/10.1172/JCI106180
  18. Morgan CR, Lazarow A. 1962. lmmunoassay of insulin: Two antibody system. Plasma insulin levels in normal, subdiabetic, and diabetic rats. Proc Soc Exp Biol Med 110: 29-32 https://doi.org/10.3181/00379727-110-27411
  19. Feldman H, Rodbard D. 1971. Methematical theory of radioimmunoassay. In Principles of competitive protein binding assays. Odell WD, Doughaday WH, eds. J.B. Leppincott Company, Phil. p 158-207
  20. Wang HJ, Murphy PA. 1994. Isoflavones content in commercial soybean foods. J Agric Food Chem 42: 1666-1673 https://doi.org/10.1021/jf00044a016
  21. Barnes S, Kirk M, Coward L. 1994. Isoflavones and their conjugates in soy food. J Agric Food chem 42: 2466-2474 https://doi.org/10.1021/jf00047a019
  22. AccQ-TagTM. 1963. AccQ-Tag amino acid analysis system: Operator's manual. Waters Corporation, USA. p 154
  23. Paola F, Rosanna V. 1987. Identification and partial purification of a (Na-K)ATPase stimulating serine protease from plasma of insulin-dependent diabetics. Clinica Chimi Acta 170: 121-134 https://doi.org/10.1016/0009-8981(87)90120-3
  24. Noe AV, Pedro Z, Eduarda C, Beatriz V, Edgar Z, Guillermo CS. 2003. Effect of glycine in streptozotocin-induced diabetic rats. Comparative Bio & Physio Part C 134: 521-527
  25. Shinjiro K, Miho S, Ikuko K, Histoshi K, Ryoji N, Seikoh H, Nebuyoshi H. 2002. Roles of N$\varepsilon$-(carboxymethyl)lysine for neovascularization of cultured retinal capillary in early and advanced stages of streptozotocin-diabetic rats. Intel Congress Series 1245: 175-180
  26. Mendez JD, Balderas F. 2001. Regulation of hyperglycemia and dyslipidemia by exogenous L-arginine in diabetic rats. Biochimie 83: 453-458 https://doi.org/10.1016/S0300-9084(00)01192-5
  27. Rutkiewicz J, Gorska M, Gorski J. 1990. Alanine and aspartate aminotransferase activities in muscles of diabetic rats. Acta Physiol Pol 41: 165-169
  28. 채규수, 강갑성, 마상조, 방광웅. 2002. 표준식품 분석학, 수정판. 도서출판 지구문화사, 서울. p 708-709
  29. 김경삼, 금종화, 노승배, 문숙희. 1999. 식품분석, 초판. 도서출판 호일문화사, 서울. p 860-287
  30. Cameron-Smith D, Habito R, Barnett M, Collier GR. 1997. Dietary guar gum mproves insulin sensitivity in streptozotocin-induced diabetic rats. J Nutr 127: 359-364 https://doi.org/10.1093/jn/127.2.359
  31. Gallaher DD, Olson JM, Larntz K. 1992. Dietary guar gum halts further renal enlargement in rats with established diabetes. J Nutr 122: 2391-2397 https://doi.org/10.1093/jn/122.12.2391
  32. Niall MG, Rosaleen AM, Daphne O, Patrick BC, Alan HJ, Gerald HT. 1990. Cholesterol metabolism in alloxan-induced diabetic rabbits. Diabetes 39: 626-636 https://doi.org/10.2337/diabetes.39.5.626
  33. Harvey JN, Jaffa AA, Margolius HS, Mayfield RK. 1990. Renal kallikrein and hemodynamic abnormalities of diabetic kidney. Diabetes 39: 299-304 https://doi.org/10.2337/diabetes.39.3.299
  34. Grey NJ, Karls I, Kipnis DM. 1975. Physiologic mechanism in the development of starvation ketosis in man. Diabetes 24: 10-12 https://doi.org/10.2337/diabetes.24.1.10
  35. Steer KA, Sochor M, Mclean P. 1985. Renal hypertrophy in experimental diabetes changes in pentose phosphate pathway activity. Diabetes 34: 485-490 https://doi.org/10.2337/diabetes.34.5.485
  36. Mogensen CE, Anderson MJF. 1973. Increase kidney size and glomerular filtration rate in early juvenile diabetes. Diabetes 22: 706-712 https://doi.org/10.2337/diab.22.9.706
  37. Gallaher DD, Casallany AS, Shoeman DW, Olson JM. 1993. Diabetes increases excretion of urinary malonaldehyde conjugates in rats. Lipid 28: 663-666 https://doi.org/10.1007/BF02536063
  38. Seyer-Hansen K. 1976. Renal hypertrophy in streptozotocin- diabetic rats. Clim Sci Mol Med Suppl 51: 551-555
  39. Reddi AS, Bollineni JS. 2001. Selenium-deficient diet renal oxidative stress and injury via TGF-beta1 in normal and diabetic rats. Kidney Int 59: 1342-1353 https://doi.org/10.1046/j.1523-1755.2001.0590041342.x
  40. Kim JY, Maeng YS, Lee KY. 1995. Antioxidative effects of soybean extracts by using various solvents. J Korean Food Sci Technol 27: 635-639
  41. Kim CS, Lee YS, Kim JS, Hahn YH. 2000. High performance liquid chromatographic analysis of isoflavones in soybean food. J Korean Food Sci Technol 32: 25-30
  42. Chio YB, Sohn HS. 1998. Isoflavone content in Korean fermented and unfermented soybean foods. J Korean Food Sci Technol 30: 745-750
  43. Kim JS, Yoon S. 1999. Isoflavone contents and $\beta$-glucosidase activities of soybean, meju, and doenjang. J Korean Food Sci Technol 31: 1405-1409
  44. Lavigne C, Marette A, Jacques H. 2000. Cod and soy proteins compared with casein improve glucose tolerance and insulin sensitivity in rats. Am J Physiol Endocrinol Metab 278: E491-500 https://doi.org/10.1152/ajpendo.2000.278.3.E491
  45. Ohara I, Tabuchi R. 2000. Effects of modified rice bran on serum lipids and taste preference in streptozotocin-induced diabetic rats. Nutr Res 20: 59-60 https://doi.org/10.1016/S0271-5317(99)00138-4
  46. Preton AM, Tome J, Morales JJ, Milan L, Cuevas AA, Medina J, Santiago JA. 1991. Diabetic parameters 58 weeks after injection with streptozotocin in rats fed basal diet supplemented with fiber, mineral and vitamins. Nutr Res 11: 895-906 https://doi.org/10.1016/S0271-5317(05)80617-7
  47. Kim MH, Kim HY, Kim WK, Kim JY, Kim SH. 2001. Effects of soy oligosaccharides on blood glucose and lipid metabolism in streptozotocin-induced diabetic rats. J Korean Nutr 34: 3-13
  48. Sexton WL. 1994. Skeletal muscle vascular transport capacity in diabetic rats. Diabetes 43: 225-231 https://doi.org/10.2337/diabetes.43.2.225
  49. Dabai FD, Walker AF, Sambrook IE, Welch VA, Owen RW, 1996. Comparative effects on blood lipids and faecal steroids of five legume species incorporated into a semipurified hypercholesterolaemic rat diet. Br J Nutr 75: 557-571 https://doi.org/10.1079/BJN19960159

Cited by

  1. Comparative study of phenolic compounds, vitamin E, and fatty acids compositional profiles in black seed-coated soybeans (Glycine Max (L.) Merrill) depending on pickling period in brewed vinegar vol.11, pp.1, 2017, https://doi.org/10.1186/s13065-017-0298-9
  2. Comparison of Functional Properties of Black Soybean Pickled in Vinegar (Chokong) vol.40, pp.2, 2011, https://doi.org/10.3746/jkfn.2011.40.2.171
  3. A comparative study of submicron- and micron-sized rice particles: enzymatic hydrolysis in vitro and food efficiency ratio in vivo vol.46, pp.2, 2011, https://doi.org/10.1111/j.1365-2621.2010.02502.x
  4. Effects of Sunsik Prepared through Steaming-Drying Cycles on Blood Glucose and Inflammatory Marker in Rats Fed High Fat vol.25, pp.1, 2015, https://doi.org/10.17495/easdl.2015.2.25.1.111
  5. The Effects of Chungkukjang Powder Supplements on the Regulation of Blood Glucose and Inflammation in Diabetic Rats vol.31, pp.2, 2015, https://doi.org/10.9724/kfcs.2015.31.2.118
  6. Anti-Diabetic Effects of Glycine soja Extract in Genetic Animal Model of db/db Mouse vol.16, pp.2, 2016, https://doi.org/10.15429/jkomor.2016.16.2.101
  7. 김천산 자두가 Streptozotocin 당뇨 유발 쥐에 미치는 영향 vol.33, pp.3, 2004, https://doi.org/10.7318/kjfc/2018.33.3.291