DOI QR코드

DOI QR Code

Effects of the Brown Seaweed Residues Supplementation on In Vitro Fermentation and Milk Production and Composition of Lactating Dairy Cows

미역부산물 첨가가 In Vitro 발효성상과 젖소의 산유량 및 유성분에 미치는 영향

  • Baek, I.K. (Faculty of Animal Life Science, Konkuk University) ;
  • Maeng, W.J. (Faculty of Animal Life Science, Konkuk University) ;
  • Lee, S.H. (Faculty of Animal Life Science, Konkuk University) ;
  • Lee, H.G. (School of Agricultural Biotechnology, Seoul National University) ;
  • Lee, S.R. (Faculty of Animal Life Science, Konkuk University) ;
  • Ha, J.K. (School of Agricultural Biotechnology, Seoul National University) ;
  • Lee, S.S. (Department of Dairy Science, Gyeongsang National University) ;
  • Hwang, J.H. (Department of Animal Sciences, Sangju National University)
  • 백인규 (건국대학교 동물생명과학부) ;
  • 맹원재 (건국대학교 동물생명과학부) ;
  • 이성훈 (건국대학교 동물생명과학부) ;
  • 이홍구 (서울대학교 농생명공학부) ;
  • 이상락 (건국대학교 동물생명과학부) ;
  • 하종규 (서울대학교 농생명공학부) ;
  • 이성실 (경상대학교 낙농학과) ;
  • 황주환 (상주대학교 축산학과)
  • Published : 2004.06.30

Abstract

This study was conducted to investigate effects of the brown seaweed residues supplementation on in vitro fermentation, and milk yield and milk composition of dairy cows. Therefore, two experiments consisting of an in vitro and an in vivo growth trial were used. In in vitro experiment, brown seaweed residues(BSR) was supplemented in basal diet with 0, 1, 2 and 4% respectively, and incubated for 3, 6, 9, 12, and 24 h. The pH value, ammonia-N and VFA were investigated. The pH value tended to increase with increasing BSR during the incubation. Particularly, pH was significantly higher in BSR treatments compared with control at 9 h(p < 0.05). While, ammonia-N concentration was not significantly different across treatments during the whole incubation. BSR supplementation did not affect total VFA production, but acetate was linearly increased in BSR treatments compared with control at 12 h(p < 0.05), and its concentration was highest(92.70 mM) in 4% BSR among treatments. The concentration of iso-butyrate tended to increase in BSR treatments in comparison to control during the incubation. In addition, the concentration of iso-valerate was higher in BSR treatments compared with control at 12 and 24 h. In growth trial, BSR was added(800 g/d/animaI) to diets of dairy cow. Dry matter intake was not affected by BSR supplementation, but daily milk yield(kg) significantly increased in BSR treatment compared with control(p < 0.05). However, milk composition(%) and milk yield(kg) were not significantly different between treatments. Milk fat(% and kg/d) tended to slightly decrease in BSR treatment compared with control(3.59% and 1.06 kg/d vs. 3.32% and 1.01 kg/d), The contents of C16:0 and C20:4 in milk significantly increased in BSR treatment compared with control reflecting from dietary fatty acid composition. The content of C18:0 in milk which is end product of biohydrogenation of CI8 unsaturated fatty acids in the rumen significantly increased in BSR treatment compared with control(p < 0.05). C18:2 content in milk tended to decrease, but tended to increase trans-II C18:l and CLA contents in milk in BSR treatment compared with control. In conclusion, it could be summarized that BSR may stabilize rumen pH, and it could improve milk yield and CIA content in milk with more than 4% of diet. Therefore, BSR could be beneficially used in dairy diets as a feed additive.

본 연구는 해양부존사료자원으로서 미역부산물의 사료적 가치와 착유우의 산유특성에 미치는 영향을 평가하기 위해 in vitro 반추위 발효성상(실험 1)과 산유성적 및 유지방산 조성(실험 2)을 조사하였다. 실험 1에서는 기초사료에 미역부산물(BSR;brown seaweed residues)을 0, 1, 2, 4% 수준으로 첨가하여 in vitro 배양장치에서 3, 6, 9, 12 및 24시간동안 배양한 후, rumen parameter(pH, 암모니아태 질소 및 휘발성지방산)를 조사하였다. 미역부산물의 첨가 비율의 증가는 배양시간이 지속됨에 따라 pH가 대조군에 비하여 다소 높아지는 경향을 나타내었으며, 특히 배양 9시간에 대조구(5.39)에 비하여 처리구에서 유의하게 증가하였다(P < 0.05). 그리고, 미역부산물이 반추위내 암모니아태 질소농도에도 전 배양시간에 걸쳐 유의한 효과가 나타나지 않았다. 미역부산물의 첨가는 휘발성지방산생성에 유의한 영향을 미치지 않았으나, acetate 생성량은 배양 12시간에서 대조군(87.29mM)에 비하여 처리군에서 유의하게 직선적으로 증가하였고(P < 0.05), 미역부산물 4% 첨가군에서 92.70mM로서 가장 높게 나타났다. iso-butyrate는 미역부산물의 첨가수준이 증가함에 따라 전반적으로 대조구에 비해 증가하는 경향을 나타내었고, iso-valerate 역시 배양 12시간과 24시간에 첨가군에서 증가하는 경향을 나타내었다(P > 0.05). 실험 2에서는 미역부산물의 착유우에 대한 산유특성을 조사한 것으로 급여량은 1일 두당 800g의 수준으로 급여하여 대조군과 비교하였다. 사료건물섭취량은 처리구에 의해 영향을 받지 않았고, 1일 산유량은 대조구에 비하여 처리군에서 유의하게 증가하였다(P < 0.05). 하지만, 유성분율과 생산량은 처리구간에 유의한 차이가 나타나지 않았고, 유지방은 조성(%)과 생산량(kg)에 있어서 대조군의 3.59%와 1.06kg에 비하여 처리군에서 각각 3.32%와 1.01kg으로 다소 낮아지는 경향을 나타내었다. 우유 내에는 C16 : 0 및 C20 : 4 지방산이 대조군에 비하여 처리군에서 유의하게 증가하였고, 이는 미역부산물의 지방산 조성을 그대로 반영해 주었으며, C18계 불포화지방산의 수소 첨가현상의 최종산물인 C18 : 0의 비율 또한 유의하게 증가하였다(P < 0.05). 우유 중 C18 : 2 함량은 대조군에 비하여 처리군에서 감소하는 대신 불완전한 C18계 불포화지방산의 수소 첨가현상으로 생성되는 trans-11 C18 : 1과 CLA 함량이 다소 증가하는 경향을 나타내었다. 이와 같이 미역부산물은 반추위내 pH를 안정시킬 뿐만 아니라 산유량 증대, 그리고 사료 내 4% 이상으로 첨가시 우유 내 CLA 함량을 증가시킬 것으로 사료되므로, 부존사료자원으로서의 잠재적 가치가 충분하다고 판단된다.

Keywords

References

  1. Allison, M. J., Bryant, M. P. and Doestch, R. N. 1962a Studies on the metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. I. Incorporation of isovalerate into leucine. J. Bacteriol. 83:523-532.
  2. Allison, M. J., Bryant, M. P., Katz, I. and Keeney, M. 1962b. Metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. II. Biosynthesis of higher branched-chain volatile fatty acids and aldehydes. J. Bacteriol. 83:1084-1093.
  3. AOAC. 1995. Official Methods of Analysis. 16th ed. Association of Official Analytical Chemists, Washington, OC.
  4. Bargo, F., Rearte, D. H, Santini, F. J. and Muller, L. D. 2001. Ruminal digestion by dairy cows grazing winter oats pasture supplemented with different levels and sources of protein. J. Dairy Sci. 84: 2260-2272. https://doi.org/10.3168/jds.S0022-0302(01)74673-5
  5. Beresford, N. A., Mayes, R. W., Colgrove, P. M., Barnett, e. L., Bryce, L., Dodd,. B'. A. and Lamb, C. S. 2000. A comparative assessment of the potential use of alginates and dietary calciwn manipulation as countenneasures to reduce the transfer of radiostrontiwn to the milk of dairy animals. J. Environ. Radioactivity 51:321-334. https://doi.org/10.1016/S0265-931X(00)00086-2
  6. Beresford, N. A., Mayes, R. W., MacEachern, P. J., Dodd, B. A. and Lamb, C. S. 1999. The effectiveness of Ca-alginate to reduce the transfer of radiostrontiwn to goats milk. J. Environ. Radioactivity 44:43-54. https://doi.org/10.1016/S0265-931X(98)00066-6
  7. Chaney, A. L. and Marbach, E. P. 1962. Modified reagents for determination of urea and ammonia, Clin. Biochem. 8:130-132.
  8. Erwin, E. S., Marco, S. J. and Emery, E. M. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44: 1768-1771. https://doi.org/10.3168/jds.S0022-0302(61)89956-6
  9. Folch, J., Lees, M. and Sloane Stanley G. H. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. BioI. Chem. 226 (1):497-509.
  10. Franklin, S. T., Martin, K. R., Baer, R. J., Schingoethe, D. J. and Hippen, A. R. 1999. Dietary marine algad..Schizochytrium sp.) increases concentrations of conjugated linoleic, docosahexaenoic and transvaccenic acids in milk of dairy cows. J. Nutr. 129:2048-2052. https://doi.org/10.1093/jn/129.11.2048
  11. Gaynor, P. J., Erdman, R. A., Teter, B. B., Sarnpugna, J., Capuco, A. V., Waldo, D. R. and Harnosh, M. 1994. Milk fat yield and composition during abomasal infusion of cis or trans octanodecenoates in Holstein cows. J. Dairy Sci. 77:157-165.
  12. Gorosito, A. R., Russell, J. B. and Van Soest, P. J. 1985. Effect of carbon-4 and carbon-5 volatile fatty acids on digestion of plant cell wall in vitro. J. Dairy Sci. 68:840-847. https://doi.org/10.3168/jds.S0022-0302(85)80901-2
  13. Greenwood, Y., Orpen, C. G. and Paterson, I. W. 1983a Digestibility of seaweeds in Orkney sheep. Proc. Physiol. Soc. 343:120.
  14. Greenwood, Y, Hall, F. J., Orpen, C. G. and Paterson, I. W. 1983b. Microbiology of seaweed digestion in Orkney sheep. Proc. Physiol. Soc. 343:121.
  15. Griinari, J. M., Dwyer, D. A., McGuire, M. A., Bauman, D. E., Palmquist, D. L. and Nurmela, K. V. V. 1998. Trans-octadecenoic acids and milk fat depression in lactating dairy cows. J. Dairy Sci. 81:1251-1261.
  16. Hansen, R R., Hector, B. L. and Feldmann, J. 2003. A qualitative and quantitative evaluation of the seaweed diet of North Ronaldsay sheep. Anim. Feed Sci. Technol. 105:21-28.
  17. Harfoot, C. G. and Hazlewood, G. P. 1988. lipid metabolism in the rwnen. In: The Rwnen Microbial Ecosystem (Hobson, P. N., ed.), pp. 285-322. Elsevier Science Publishers B. V., Amsterdam, The Netherlands.
  18. Holden, L. A., Muller, L. D., Varga, G. A. and Hillaro, P. J. 1994. Ruminal digestion and duodenal nutrient flows in dairy cows conswning grass as pasture, hay, or silage. J. Dairy Sci. 77:3034-3042. https://doi.org/10.3168/jds.S0022-0302(94)77245-3
  19. Hoover, W. R and Stokes, S. R. 1991. Balancing carbohydrates and proteins for optimum rumen microbial yield. J. Dairy Sci. 74:3630-3644 https://doi.org/10.3168/jds.S0022-0302(91)78553-6
  20. Hou, X., Chai, C., Qian, Q., Yan, X. and Fan, X. 1997. Determination of chemical species of iodine in some seaweeds (I). Science of the Total Environment 204:215-221.
  21. Hutjens, M. 1998. Feeding guide. Hoard's dairyman. W. D. Hoards & Sons Co.
  22. Ip, C., Scimeca, J. A. and Thompson, H. J. 1994. Conjugated linoleic acid: a powerful anticarcinogen from animal fat sources. Cancer 74:1050-1054.
  23. Jasaitis, D. K., Wohlt, J. E. and Evans, J. L. 1987. Influence of feed ion content on buffering capacity of ruminant feedstuffs in vitro. J. Dairy Sci. 70: 1391.
  24. Kahl, S., Capuoo, A. V., Binelli, M., Vanderkooi, W. K., Tucker, H A and Moseley, W. M. 1995. Comparison of growth honnone-releasing factor and somatotropin: Thyroid status of lactating, primiparous cows. J. Dairy Sci. 78:2150-2158. https://doi.org/10.3168/jds.S0022-0302(95)76842-4
  25. Kepler, C. R. and Tove, S. B. 1967. Biohydrogenation of unsaturated fatty acids. III. Purification and properties of a linoleate delta-12-cis, delta IItrans-isomerase from Butyrivibrio fibrlsolvens. J. BioI. Chem. 242:5686-5692.
  26. Klinkenberg, G., Lystad, K. Q., Levine, D. W. and Dyrset, N. 2001. Cell release from alginate immobilized Lactococcus lactis ssp. lactis in chitosan and alginate coated beads. J. Dairy Sci. 84:1118-1127.
  27. Maeng, W. J., Van Nevel, C. J., Baldwin, R. L. and Morris, J. G. 1976. Rumen microbial growth rates and yields : Effect of amino acids and protein. J. Dairy Sci. 59:68-79. https://doi.org/10.3168/jds.S0022-0302(76)84157-4
  28. Munda, I. M 1977. Differences in amino acid composition of estuarine and marine fucoids. Aquat. Bot 3:273-280.
  29. Murata, M, Ishihara, K. and Saito, H 1999. Hepatic fatty acid oxidation enzyme activities are stimulated in rats fed the brown seaweed, Undaria pinnatifida(wakarne). J. Nutr. 129:146-151.
  30. Murata, M., Sano, Y., Ishihara, K. and Uchida, M 2002. Dietary fish oil and Undaria pinnatifida(walaune) synergistically decrease rat serum and liver triacylglyceroI. J. Netr, 132:742-747.
  31. Norzieh, M. H. and Ching, C. Y. 2000. Nutritional composition of edible seaweed Gracilaria changgi. Food Chem. 68:69-76. https://doi.org/10.1016/S0308-8146(99)00161-2
  32. NRC. 2001. Nutrient requirements of dairy cattle. 7th revised edition. National academy press. Washington, D.C.
  33. Perfield n, J. W., Bernal-Santos, G., Overton, T. R. and Bauman, D. E. 2002. Effects of dietary supplementation of rumen-protected conjugated linoleic acid in dairy cows during established lactation. J. Dairy Sci. 85:2609-2617. https://doi.org/10.3168/jds.S0022-0302(02)74346-4
  34. Quevedo-Corona, L., Franco-Colin, M., CaudilloRomero, M., Pacheoo-Rosado, J., Zamudio-Hemandez, S. and Racotta, R. 2000. 3,5,3'-triiodothyronine administered to rat dams during lactation increases milk yield and triglyceride concentration and hastens pups growth. Life Sci. 66(21):2013-2021.
  35. Rearte, D. H and Santini, F. J. 1993. Rumen digestion of temperate pasture: effects on milk yield and composition. Page 562 in Proc. XVII Int Grassl. Congr. N. Z.
  36. Ruperez, P. 2002. Mineral content of edible marine seaweeds. Food Chem. 79:23-26.
  37. Russell, J. B., O'Connor, J. D., Fox, D. G., Van Soest, P. J. and Sniffen, C. J. 1992. A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. J. Anim Sci. 70:3551-3561 https://doi.org/10.2527/1992.70113551x
  38. Russell, J. B. and Sniffen, C. J. 1984. Effect of carbon-4 and carbon-5 volatile fatty acids on growth of mixed rumen bacteria in vitro. J. Dairy Sci. 67:987.
  39. Russell, J. B. and Wilson, D. B. 1996. Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? J. Dairy Sci. 79:1503-1509. https://doi.org/10.3168/jds.S0022-0302(96)76510-4
  40. Sanchez-Machado, D. I., LOpezoCervantes, J., LOpezHem3ndez, J. and Paseiro-Losada, P. 2004. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 85:439-444.
  41. SAS. 2000. $SAS/STAT^{\circledR}$ User's guide (Release 8.1 ed.). Statistics, SAS Inst, Inc., Cary, NC.
  42. Selner, D. R. and Schultz, L. H. 1980. Effect of feeding oleic acid or hydrogenated vegetable oils to lactating cows. J. Dairy Sci. 63:1235-1241. https://doi.org/10.3168/jds.S0022-0302(80)83074-8
  43. Slyter, L. L. 1976. Influence of acidosis on rumen function. J. Anim. Sci. 43:910-929. https://doi.org/10.2527/jas1976.434910x
  44. Soofi, R, Fahey, Jr. G. C., Berger, L. L. and Hinds, F. C. 1982. Effect of branched chain volatile fatty acids, $Trypticase^{\circledR}$, urea, and starch on in vitro dry matter disappearance of soybean stover. J. Dairy Sci. 65:1748-1753. https://doi.org/10.3168/jds.S0022-0302(82)82411-9
  45. Steel, R G. D. and Torrie, J. H 1980. Principles and procedures of statistics. A Biometrical approach (2nd 005.). McGraw-Hill, Inc.
  46. Sukhija, P. S. and Palmquist, D. L. 1988. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 36:1202-1206. https://doi.org/10.1021/jf00084a019
  47. Swanson, E. W., Miller, J. K., Mueller, F. J., Patton, C. S., Bacon, J. A. and Ramsey, N. 1990. Iodine in milk and meat of dairy cows fed different amounts of potassium iodide or ethylenediamine dihydroiodide. J. Dairy Sci. 73:398-405.
  48. Tilley, J. M. A. and Terry, R. A. 1963. A two-stage technique for the in vitro digestion of forage crops. J. Br. Grassl. Soc. 18:104-111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
  49. Tucker, H. A 1981. Physiological control of mammary growth, lactogenesis, and lactation. J. Dairy Sci. 64:1403.
  50. Van Gylswyk, N. O. 1970. The effect of supplementing a low-protein hay on the cellulolytic bacteria in the rumen of sheep and on the digestibility of cellulose and hemicellulose. J. Agric. Sci. 74: 169-174. https://doi.org/10.1017/S0021859600021122
  51. Van Soest, P. J., Roberts, J. B. and Lewis, B. A. 1991. Methods for dietary fiber, neutral detergent fiber, and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  52. Ventura, M. R. and Castanon, J. I. R. 1998. The nutritive value of seaweed(Ulva rigida) for goats. Small Rumin. Res. 29:325-327.
  53. Wilde, P. F. and Dawson, R. M. C. 1966. The biohydrogenatioo of alpha-linolenic acid and oleic acid by rumen microorganisms. Biochem J. 98:469-475.
  54. 곽완섭, 윤정식. 2003. 농산업부산물들에 대한 배출 현장 조사 및 사료적 가치 평가. 한국동물자원과학회지. 45(2):251-264.
  55. 박권필, 김태희, 김영숙, 차왕석, 우명우. 2001. 미역 폐기물 및 미역폐기물 유도체에 의한 중금속 이온의 생물흡착. 한국환경과학회지 10(2):153-158.

Cited by

  1. Effect of Fermented Brown Seaweed Waste (FBSW) on in vitro Rumen Microbial Fermentation vol.53, pp.4, 2011, https://doi.org/10.5187/JAST.2011.53.4.349
  2. Effect of Feeding Seaweed as Mineral Source on Mineral Metabolism, Blood and Milk Mineral Profile in Cows vol.86, pp.1, 2016, https://doi.org/10.1007/s40011-014-0413-9
  3. Nutritional Evaluation of Seaweed on Nutrient Digestibility, Nitrogen Balance, Milk Production and Composition in Sahiwal Cows vol.87, pp.2, 2017, https://doi.org/10.1007/s40011-015-0616-8
  4. Effects of dietary supplementation with fermented and non-fermented brown algae by-products on laying performance, egg quality, and blood profile in laying hens vol.31, pp.10, 2018, https://doi.org/10.5713/ajas.17.0921