DOI QR코드

DOI QR Code

Spacecraft Attitude Control with a Two-axis Variable Speed Control Momentum Gyro

2축 김벌의 가변속도 CMG를 이용한 인공위성 자세제어

  • 방효충 (한국과학기술원, 항공우주공학전공) ;
  • 박영웅 (한국항공우주연구원)
  • Published : 2004.06.01

Abstract

CMG(Control Momentum Gyro) is a control device being used for spacecraft attitude control constructing relatively large amount of torque compared to conventional body-fixed reaction wheels. The CMG produces gyroscopic control torque by continuously varying the angular momentum vector direction with respect to the spacecraft body. The VSCMG(Variable Speed Control Momentum Gyro) has favorable advantages with variable speed to lead to better control authority as well as singularity avoidance capability. Attitude dynamics with a VSCMG mounted on a two-axis gimbal system are derived in this study. The dynamic equation may be considered as an extension of the single-axis counterpart. Also, a feedback control law design is addressed in conjunction with the dynamic equations of motion.

CMG(Control Momentum Gyro) 는 일반적으로 동체에 부착된 반작용휠에 비해 큰 토크의 크기를 발생시켜 인공위성의 자세제어에 이용되는 장치이다. CMG는 휠의 각 운동량벡터의 방향을 위성체의 동체축에 대하여 연속적으로 변화시킴으로써 자이로스코픽 토크를 발생하게 된다. 가변속도 CMG는 휠의 속도도 함께 변화시킴으로써 보다 다양한 제어 명령을 생성할 수 있게 되고 또한 특이(Singularity) 조건을 피하는데 장점을 지니고 있다. 본 연구에서는 2축의 김발에 장착된 가변속도 CMG를 이용한 위성체의 자세 동역학 방적식을 유도하기로 한다. 이러한 운동방정식은 기존의 1축 김벌 시스템의 경우를 확장한 것이다. 또한 유도된 운동방정식을 활용하여 피드백 자세기동 제어 법칙을 제안하기로 한다.

Keywords

References

  1. 우병삼, 정보환, 채장수, "반작용휠을 이용한 인공위성의 3축 자세제어기 설계에 관한 연구," 한국항공우주학회지, Vol. 25, No. 3, 1997, pp. 148-156.
  2. Branets, V. N., et al. "Development Experience of the Attitude Control System Using Single-Axis Control Momentum Gyros for Long-Term Orbiting Space Stations," 38th Congress of the International Astronautical Federation, IAF-87-04, Oct. 1987.
  3. Bedrossian, N. S., Paradiso, J., Bergmann, E. V., Rowell, D., "Steering Law Design for Redundant Single-Gimbal Control Momentum Gyroscopts," Journal of Guidance Control and Dynamics, Vol. 13, No. 6, 1990, pp. 1083-1089. https://doi.org/10.2514/3.20582
  4. Bedrossian, N. S., Paradiso, J., Bergmann, E. V., Rowell, D., "Redundant Single-Gimbal Control Moment Gyroscope Singularity Analysis," Journal of Guidance Control and Dynamics, Vol. 13, No. 6, 1990, pp. 1096-1101. https://doi.org/10.2514/3.20584
  5. Oh, H. S., Vadali, S. R., "Feedback Control and Steering Laws for Spacecraft Using Single Gimbal Control Momentum Gyroscope," Journal of Astronautical Sciences, Vol. 39, No. 2, 1991, pp. 183-203.
  6. Nakamura, Y., Hanafusa, H., "Inverse Kinematics Solutions with Singularity Robustness for Robot Manipulator Control," Journal of Dynamic Systems, Measurement, and Control, Vol. 108, Sept. 1986, pp. 164-171.
  7. Kurokawa, H., "Constrained Steering Law of Pyramid-Type Control Moment Gyros and Ground Tests," Journal of Guidance Control and Dynamics, Vol. 20, No. 3, 1997, pp. 445-449. https://doi.org/10.2514/2.4095
  8. Heiberg, C. J., Bailey, D., Wie, B., "Precision Pointing Control of Agile Spacecraft Using Single-Gimbal Control Momentum Gyros," Proceedings of the AlAA Guidance, Navigation, and Control Conference, AIAA Washington, DC, 1997, pp. 1620-1632.
  9. Hoelscher, B. R., Vadali, S. R., "Optimal Open-Loop and Feedback Control Using Single Gimbal Control Momentum Gyroscopes, Vol. 42, No. 2, 1994, pp. 189-206.
  10. Schaub, H., Junkins, J. L., "Stereographic Orientation Parameters for Attitude Dynamics: A Generalization of the Rodrigues Parameters," Journal of Astronautical Sciences, Vol. 44, No. 1, 1996, pp. 1-19.
  11. Krishnan, S., Valdai, S. R., "An Inverse-Free Technique for Attitude Control of Spacecraft Using CMGs," Acta Astronautica, Vol. 39, No. 6, 1997, pp. 431-438. https://doi.org/10.1016/S0094-5765(96)00152-X
  12. Schaub, H., Vadali, S. R., Junkins, J. L., "Feedback Control Law for Variable Speed Control Momentum Gyroscope," Journal of Astronautical Sciences, Vol. 44, No, 1, 1996, pp. 307-328.
  13. Heiberg, C. J., Bailey, D., Wie, B., "Precision Spacecraft Pointing Using Single-Gimbal Control Moment Gyroscopes with Disturabnce," Journal of Guidance Control and Dynamics, Vol. 23, No. 1, 2000, pp. 77-85. https://doi.org/10.2514/2.4489
  14. Richie, D. J., Tsiotras, P., Fausz, J. L., "Simultaneous Attitude Control and Energy Storage Using VSCMGs: Theory and Simulation," Proceeding of the American Control Conference, American Automatic Control Council, New York, 2001, pp. 3973-3979.
  15. Yoon, H., Tsiotra, P., "Spacecraft Adaptive Attitude and Power Tracking with Variable Speed Control Moment Gyroscope," Journal of Guidance Control and Dynamics, Vol. 25, No. 6, 2002, pp. 1081-1090. https://doi.org/10.2514/2.4987
  16. Schaub, H., Junkins, J. L., "Analytical Mechanics of Space Systems," AIAA Education Series, AlAA, Reston, VA, 2003.
  17. J. L. Junkins, J. D. Turner, Optimal Spacecraft Rotational Maneuvers, Elsevier Science Publishers, Netherlands, 1986.
  18. M. H. Kaplan, Modern Spacecraft Dynamics & Control, John Wiley & Sons, U.S.A., 1976.
  19. 박영웅, 방효충, "더블김벌, 모멘텀휠을 이용한 롤/요 제어기 설계," 학국자동제어학술회의, 1996년10월, pp. 1099-1102.

Cited by

  1. Angular Speed Estimation and Two-Axis Attitude Control of a Spacecraft Using a Variable-Speed Control Moment Gyroscope vol.16, pp.11, 2010, https://doi.org/10.5302/J.ICROS.2010.16.11.1104