Seasonal Variation of Water Quality in a Shallow Eutrophic Reservoir

얕은 부영양 저수지의 육수학적 특성-계절에 따른 수질변화

  • Kim, Ho-Sub (Department of Environmental Science, Konkuk University) ;
  • Hwang, Soon-Jin (Department of Environmental Science, Konkuk University)
  • Published : 2004.06.30

Abstract

This study was carried out to assess the seasonal variation of water quality and the effect of pollutant loading from watershed in a shallow eutrophic reservoir (Shingu reservoir) from November 2002 to February 2004, Stable thermocline which was greater than $1^{\circ}C$ per meter of the water depth formed in May, and low DO concentration (< 2 mg $O_2\;L^{-1}$) was observed in the hypolimnion from May to September, 2003. The ratio of euphotic depth to mixing depth ($Z_{eu}/Z_{m}$) ranged 0.2 ${\sim}$ 1.1, and the depth of the mixed layer exceeded that of the photic layer during study period, except for May when $Z_{eu}$ and $Z_{m}$ were 4 and 4.3 m, respectively. Most of total nitrogen, ranged 1.1 ${\sim}$ 4.5 ${\mu}g\;N\;L^{-1}$, accounted for inorganic nitrogen (Avg, 58.7%), and sharp increase of $NH_3$-N Hand $NO_3$-N was evident during the spring season. TP concentration in the water column ranged 43.9 ${\sim}$ 126.5 ${\mu}g\;P\;L^{-1}$, and the most of TP in the water column accounted for POP (Avg. 80%). During the study period, DIP concentration in the water column was &;lt 10 ${\mu}g\;P\;L^{-1}$ except for July and August when DIP concentration in the hypolimnion was 22.3 and 56.7 ${\mu}g\;P\;L^{-1}$, respectively. Increase of Chl. a concentration observed in July (99 ${\mu}g\;L^{-1}$) and November 2003 (109 ${\mu}g\;L^{-1}$) when P loading through two inflows was high, and showed close relationship with TP concentration (r = 0.55, P< 0.008, n = 22). Mean Chl. a concentration ranged from 13.5 to 84.5 mg $L^{-1}$ in the water column, and the lowest and highest concentration was observed in February 2004 (13.5 ${\pm}$ 1.0 ${\mu}g\;L^{-1}$) and November 2003 (84.5 ${\pm}$29.0 ${\mu}g\;L^{-1}$), respectively. TP concentration in inflow water increased with discharge (r = 0.69, P< 0.001), 40.5% of annual total P loading introduced in 25 July when there was heavy rainfall. Annual total P loading from watershed was 159.0 kg P $yr^{-1}$, and that of DIP loading was 126.3 kg P $yr^{-1}$ (77.7% of TP loading. The loading of TN (5.0ton yr-1) was 30 times higher than that of TP loading (159.0 kg P yr-1), and the 78% of TN was in the form of non-organic nitrogen, 3.9 ton $yr^{-1}$ in mass. P loading in Shingu reservoir was 1.6 g ${\cdot}$ $m^{-2}$ ${\cdot}$ $yr^{-1}$, which passed the excessive critical loading of Vollenweider-OECD critical loading model. The results of this study indicated that P loading from watershed was the major factor to cause eutrophication and temporal variation of water quality in Shingu reservoir Decrease by 71% in TP loading (159 kg $yr^{-1}$) is necessary for the improvement of mesotrophic level. The management of sediment where tine anaerobic condition was evident in summer, thus, the possibility of P release that can be utilized by existing algae, may also be considered.

본 연구는 2002년 11월부터 2004년 2월까지 수심이 얕은 부영양상태의 저수지에서계절에 따른 수질변화와이에 대한 유입 부하량 영향을 평가하기 위해 이루어졌다. 수심간의 수온차가 $1^{\circ}C\;m^{-1}$ 이상의 수온약층이 5월에 형성되었고, 심층에서 2 mg $O_2\;L^{-1}$ 이하의 낮은 산소농도가 5월부터 9월까지 관찰되었다. $Z_{eu}/Z_{m}$은 0.2${\sim}$l.1의 범위로 수온약층 형성으로 혼합 층이 수심 4m근처이고 유광대 층이 수심 4.3m였던 5월을 제외하고는 대부분의 기간 동안에 유광대층에 비해 혼합층의 수심이 깊은 것으로 나타났다. 수체내 질소는 1.1 ${\sim}$ 4.5 mg N $L^{-1}$ 의범위로, 대부분이 용존 형태(Avg. 58.7%)로 존재하고 있었으며 결빙된 수표면의 해빙 시에 암모니아성 질소와 질산성질소가 증가하였다. 저수지내 총인 농도는43.g${\sim}$126.6 ${\mu}g\;P\;L^{-1}$범위로 대부분은 입자성인의 형태(Avg. 80%)로 존재하고 있었다. 용존무기인 농도는 심층에서의 일시적인 증가가 관찰된 7월과 8월을 제외하고는 10 ${\mu}g\;P\;L^{-1}$ 이하였다. 엽록소 a 농도의 뚜렷한 증가는인 유입부하량이 많았던 7월 (99 ${\mu}g\;L^{-1}$)과 11월 (109 ${\mu}g\;L^{-1}$)에 관찰되었고 수체내 총인과 양의 상관성을 보였다(r=0.55, P<0.008, n=22).수층간의 평균 엽록소 a 농도는11월 8일에 84.5${\pm}$29.0 ${\mu}g\;L^{-1}$으로 가장 높았고 2월에13.5${\pm}$ 1.0 ${\mu}g\;L^{-1}$로 가장 낮았다. 유입수량이 증가할 수록유입수내 층인 농도도 증가하는 경향을 나타냈으며(r=0.69,P<0.001), 1년 중 강우량이 많았던 7월 25일 하루동안에 연간 총인 유입부하량의 40.5%가 유입되었고, 11월 8일에도 17.1%가 유입되었다. 유역으로부터 유입되는총인 부하량은 159.0kg P $yr^{-1}$였고, 식물플랑크톤에 의해직접 이용 될 수 있는 용존무기인 부하량은 126.3 kg P $yr^{-1}$로 총인의 77.7%에 해당하였다. 총 질소 부하량은 5.0 ton $yr^{-1}$로 총 인 부하량(159.0 kg P $yr^{-1}$)에 비해 30배 정도 많았으며, 총질소 부하 중 무기질소 부하량은3.9 ton $yr^{-1}$로 총 질소의 78%였다. 인 임계 부하량은 1.6 g ${\cdot}$ $m^{-2}$${\cdot}$$yr^{-1}$으로 과잉임계부하량을 상회하는 수준 이였다. 본 연구결과 저수지의 유역으로부터 유입되는 많은양의 유입 인 부하는 저수지 수질의 계절적인 변화 뿐 만아니라 부영양화의 가장 큰 원인으로 나타났으며, 중영양상태의 수질을 유지하기 위해서는 총인 유입부하량(159 kg $yr^{-1}$)의 71%가 감소되어야 할 필요성이 제기되었다. 또한 여름철 심층 산소 고갈이 야기되었고, 이 시기에 퇴적물로 용출된 인이 식물플랑크톤 성장에 이용될 수 있기때문에 퇴적물에 대한 관리도 수행될 필요가 있다.

Keywords

References

  1. 김동섭, 김범철, 황길순, 박주현. 1995a. 팔당호의 부영양화 경향 (1988-1994). 한국수질보전학회지 11: 295-302
  2. 김범철, 김재옥, 전만식, 황순진. 1999. 소양호 동.식물플랑크톤의 계절변동. 한국육수학회지 32: 127-134
  3. 김범철, 허우명, 황길순. 1995b. 도암호의 부영양화 실태. 한국육수학회지 28: 233-240
  4. 김윤희. 1998. 홍수시 소양호에서 중층탁류의 이동 및 영향에 관한 연구. 강원대학교 환경학과 석사학위논문
  5. 김호섭, 황순진, 2004. 부영양저수지에서 식물플랑크톤 성장에 대한 제한영양염과 질소/인 비의 영향. 한국육수학회지 37:36-46
  6. 농림부 농업기반공사, 2001. 농업용수 수질측정망 조사 보고서
  7. 박주현. 2003. 한국 주요호수의 비교육수학적 연구. 강원대학교 환경학과 대학원 이학박사학위논문
  8. 신재기, 강창근, 황순진. 2003b. 팔당호에서 수중탁도의 일변동과 고탁수 입자의 분포. 한국육수학회지 36: 257-268
  9. 신재기, 조주래, 황순진, 조경제. 2000. 경안천-팔당호의 부영양화와 수질오염특성. 한국육수학회지 33: 387-394
  10. 신재기, 황순진, 강창근, 김호섭. 2003a. 하천형 저수지 팔당호의 육수학적 특성: 수문과 환경요인. 한국육수학회지 36:242-256
  11. 조경제, 신재기. 1997. 낙동강 중∙하류에서 무기 N∙P 영양염의 변동. 한국육수학회지 30: 85-95
  12. 조경제, 신재기. 1998. 낙동강 하류에서 동∙하계의 N∙P 영양염류와 식물플랑크톤의 동태. 한국육수학회지 31: 97-75
  13. 조규송. 1993. 한국담수동물플랑크톤 도감. 아카데미서적
  14. 한명수, 유재근, 유광일, 공동수. 1993. 팔당호의 생태학적 연구 1. 수질의 연변화: 과거와 현재. 한국육수학회지 26: 141-149
  15. Agbeti, M.D. and J.O. Smol. 1995. Winter limnology: Com-parison of physical, chemical and biological characte-ristics in two temperature lakes during lakes during ice over. Hydrobiologia 304: 221-234
  16. APHA. 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed., APHA-AWWA-WEF, Washington, D.C., USA
  17. Carpenter, S.R. and J.R.Kitchell. 1993. Cascading trophic interactions and lake productivity. Bioscience 35: 634-639
  18. Cooke, G.D., E.G. Welch, S.P. Peterson and P.R. Newroth. 1993. Restoration and management of lakes and reser-voirs (2nd ed.). Lewis. Boca Raton. p.548
  19. Denman, K. and A.E. Gargett. 1983. Time and space scale of vertical mixing and advection of phytoplankton in the upper ocean. Limnol. Oceanogr. 28: 801-815
  20. Edmonson, W.T. and J.T. Lehman. 1981. The effect of changes in the nutrient income on the condition of lake Washington. Limnol. Oceanogr. 26: 1-29
  21. Faithful, J.W. and D.J. Griffiths. 2000. Turbid flow through a tropical reservoir (Lake Dalrymple, Queensland, Australia): Responses to summer storm event. Lakes & Reservoir Management 5. 231-247
  22. Horne, A.J. and C.R. Goldman. 1994. Limnology 2nd edition. McGraw-Hill, Singapore. p. 50
  23. Hoyer, M.V. and J.R. Jones. 1983. Factors affecting the ralation between phosphorus and chlorophyll a in USA midwestern reservoirs. Can. J. Fish. Aquat. Sci. 40: 192-199
  24. Hutchinson, C.E. 1957. A treaties on limnology. I, Geogr-aphy Physics and Chemistry. New York, Jone Wiley and Sons Inc. p.1015
  25. Hwang, Soon-Jin, Chun. G. Yoon and Soon Kook Kweon. 2003. Water quality and limnology of Korean reser-voirs. Paddy & Water Environment 1: 43-52
  26. Jeppesen, E., P.Kristensen, J.P. Jensen, M. Sndergaard E. Mortensen and T.L. Lauridsen. 1991. Recovery resilience following a reduction in external phosphorus loading of shallow eutrophic danish lakes: duration, regulating factors and methods for overcoming resilience. Memorie dell’sIstituto Italiano di Idrobiologia 48: 127-148
  27. Kalff, J. 2002. Limnology, Inland Water Ecosystem. Pren-tice-Hall, Inc
  28. Kimmel, B.L. and M.M. White. 1979. DCMU-enhanced chlorophyll fluorescence as an indicator of the physiol-ogical status of reservoir phytoplankton: An initial eva-luation. pp. 246-262. In: Phytoplankton-environmental interactions in reservoirs (M.W. Lorenzen, ed). U.S. Army Waterways Experiment Station, Vicksburg, MS
  29. Lathrop, R.C. and S.R. Carpenter. 1990. Zooplankton and their relationship to phytoplankton, p.127-150. In: Food Web management (J.F. Kitchell, ed.). Springer-Verlag, New York
  30. Lillie, R.A. and J.W. Mason. 1983. Limnological charact-eristics of Wisconsin lakes. Tech. Bull No. 138., Dept. Nat. Resour., Madison, WI
  31. $L\phi vatad$, O. and K. $Bj\phi rndalen$. 1990. Nutrients (P, N, Si) and growth conditions for diatom and Oscillatoria spp. in lakes in south-estern Norway. Hydrobiologia 196:255-263
  32. Marker, A.F.H. 1972. The use of acetone and methanol in the estimation of chlorophyll in the presence of phaeo-phytin. Freshwater Biol. 2: 361-385
  33. Marker, A.F.H., E.A. Nusch, I. Rai and B. Riemann. 1980. The measurement of photosynthetic pigments in fresh-waters and standardization of methods: Conclusions and recommendations. Arch. Hydrobiol. Beih. 14: 91-106
  34. Odum, E.P. 1959. Fundamentals of Ecology. W.B. Saun-ders, Philadephia. p. 546
  35. Phlips, E.J., M. Cichra, K.E.Havens, C. Hanlon, S. Badylak, B. Rueter, M. Randall and P. Hansen. 1997. Relation-ships between phytoplankton dynamics and the avail-ability of light and nutrients in a shallow subtrophical lake. J. Plankton Res. 19: 319-342
  36. Prepas, E.E. and F.H. Rigler. 1982. Improvements in quan-tifying the phosphorus concentration in lake water. Can. J. Fisher Aquat. Sci. 39: 882-829
  37. Reynolds, C.S. 1982. Phytoplankton periodicity its moti-vation, mechanisms and manipulation. Annual Report of the Freshwater Biological Association 50: 60-75
  38. Reynolds, C.S. 1987. Cyanobacterial water-blooms. In J. Callow (ed), Advances in Botanical Research, Academic Press, London 13: 437-481
  39. Reynolds, C.S. 1989. Physical determinants of phytop-lankton succession. pp. 9-56. In : Plankton ecology: succession in plankton communities (U. Sommer, ed.). Springer Veri., Berlin
  40. Schindler, D.W. 1974. Eutrophication and recovery in experimental lakes: implications for lake management. Sci. 184: 897-899
  41. Sommer, U., Z.M. Gliwicz, W. Lampert and A. Duncan. 1986. The PEG-model of seasonal succession of plank-tonic events in fresh waters. Arch. Hydrobiol. 106: 433-471
  42. Talling, J.F. 1962. Freshwater algae, pp. 743-757. In: Physi-ology and biochemistry of algae (R. A. Lewin, ed.). Academic Press, New York
  43. Tarapchak, S.J., S.M. Bigelow and C. Rubitschun. 1982. Overestimation of prthophosphorus concentrations in surface waters of southern Lake Michigan: Effects of acid and ammonium molybdate. Can. J. Fish. Aquat. Sci. 39: 296-304
  44. Thornton, K.W., B.L. Kimmel and F.E. Payne. 1990. Reser-voir limnology: ecological perspectives. 246 pp. John Wiley & Sons, Inc. New York
  45. Van der Molen, D.T. and P. C. M. Boers. 1994. Influence of internal loading on phosphorus concentration in shal-low lakes before and after reduction of the external loading. Hydrobiologia 275/276: 379-389
  46. Vollenweider, R.A. 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. Ital. Idrobiol. 33: 53-83
  47. Williams, W.F. and J.W. Barko. 1991. Estimation of phos-phorus exchange between littoral and pelagic zones during nighttime convective circulation. Limnol. Oceanogr. 36: 179-187