DOI QR코드

DOI QR Code

The Effect of Geometric Shape of Amorphous Silicon on the MILC Growth Rate

MILC 성장 속도에 비정질 실리콘의 기하학적 형상이 미치는 영향

  • Kim Young-Su (School of Materials Science & Engineering, Seoul National University) ;
  • Kim Min-Sun (School of Materials Science & Engineering, Seoul National University) ;
  • Joo Seung-Ki (School of Materials Science & Engineering, Seoul National University)
  • 김영수 (서울대학교 재료공학부) ;
  • 김민선 (서울대학교 재료공학부) ;
  • 주승기 (서울대학교 재료공학부)
  • Published : 2004.07.01

Abstract

High quality polycrystalline silicon is very critical part of the high quality thin film transistor(TFT) for display devices. Metal induced lateral crystallization(MILC) is one of the most successful technologies to crystallize the amorphous silicon at low temperature(below $550^{\circ}C$) and uses conventional and large glass substrate. In this study, we observed that the MILC behavior changed with abrupt variation of the amorphous silicon active pattern width. We explained these phenomena with the novel MILC mechanism model. The 10 nm thick Ni layers were deposited on the glass substrate having various amorphous silicon patterns. Then, we annealed the sample at $550^{\circ}C$ with rapid thermal annealing(RTA) apparatus and measured the crystallized length by optical microscope. When MILC progress from narrow-width-area(the width was $w_2$) to wide-width-area(the width was $w_1$), the MILC rate decreased dramatically and was not changed for several hours(incubation time). Also the incubation time increased as the ratio, $w_1/w_2$, get larger. We can explain these phenomena with the tensile stress that was caused by volume shrinkage due to the phase transformation from amorphous silicon to crystalline silicon.

Keywords

References

  1. K. Nakazawa, J. Appl. Phys., 69(3), 1703 (1991) https://doi.org/10.1063/1.347215
  2. T. J. King and K. C. Saraswat, IEEE Electron Device Lett., 13(6), 309 (1992) https://doi.org/10.1109/55.145067
  3. H. Kuriyama, S. Kiyama, S. Noguchi, T. Kuwahara, S. Ishida, T. Nohda, K. Sano, J. Iwata, S. Tsuda and S. Nakano, IEDM 1991 Tech. Dig., 565 (1991) https://doi.org/10.1109/IEDM.1991.235407
  4. S. W. Lee and S. K. Joo, IEEE Electron Device Lett., 17(4), 160 (1996) https://doi.org/10.1109/55.485160
  5. S. W. Lee and Y. C. Jeon, and S. K. Joo Appl. Phys. Lett., 66(13), 1671 (1995) https://doi.org/10.1063/1.113888
  6. Tae-Hyoung Ihn, Tae-Kyung Kim, Byung-Il Lee, and Seung-Ki Joo, Microelectronics Reliability 39, 53 (1998) https://doi.org/10.1016/S0026-2714(98)00160-7
  7. Zhinguo Meng, Mingxiang Wang and Man Wong, 47(2), 404 (2000) https://doi.org/10.1109/16.822287
  8. M.Man Wong, J.Jhonghe Jin, G. A. Gururaj A. Bhat, P. C. Philip C. Wong, and H. S. Hoi Sing Kwok, IEEE Trans. Electron Devices, 47, 1061 (2000) https://doi.org/10.1109/16.841241
  9. S. W. Lee, Ph. D Thesis, Seoul National University (1996)
  10. Z.Remes, M Vanecek, A. H. Manhan, and R. S. Crandall, Phys. Rev. B 56, 12710 (1997) https://doi.org/10.1103/PhysRevB.56.R12710
  11. A. H. M . Smets, W. M. M. Kessels, and M. C. M. van de Sanden, Appl. Phys. lett. 82, 1547 (2003) https://doi.org/10.1063/1.1559657
  12. E. Nygren, M. J. Aziz, and D. Tunbull, J. M. Poate, D.C. Jacobson, and R. Hull, Appl. Phys. Lett. 47(3),232 (1985) https://doi.org/10.1063/1.96228
  13. G. Q Lw, E. Nygren, M.J. Aziz, J. Appl. Phys. 70 (10), 5323(1991) https://doi.org/10.1063/1.350243
  14. C. Hayzelden and J. L. Batsone, J. Appl. Phys. 73(12), 8279 (1993) https://doi.org/10.1063/1.353446