Effects of Pluronic F-68 on Cell Growth of Digitalis lanata in Aqueous Two-Phase Systems

  • LEE , SANG-YOON (Department of Biological Engineering, Inha University) ;
  • KIM, DONG-IL (Department of Biological Engineering, Inha University)
  • Published : 2004.12.01

Abstract

The effects of Pluronic F-68, a non-ionic surfactant, on the growth and physical characteristics of Digitalis lanata suspension cultures were investigated in aqueous two-phase systems (ATPSs) composed of $4.5\%$ polyethylene glycol (PEG) 20,000 and $2.8\%$ crude dextran. In the range of 0.1-10.0 g $1^{-1}$, Pluronic F-68 enhanced the maximum cell density in a medium with ATPSs, even though Pluronic F-68 did not affect cell growth in a normal growth medium. In terms of physical properties of ATPSs with cell suspension cultures, 0.2 g $1^{-1}$ of Pluronic F-68 reduced viscosity by up to $40\%$, while 0.1 g $1^{-1}$ of Pluronic F-68 significantly enhanced the oxygen transfer rate. In addition, we successfully performed aqueous two-phase cultivation in a 5-1 stirred tank bioreactor with 0.5 g $1^{-1}$ of Pluronic F-68, and discovered that cell growth in ATPSs was similar to that in normal growth medium.

Keywords

References

  1. Andersson, E. and B. Hahn-Hägerdal. 1990. Bioconversions in aqueous two-phase systems. Enzyme Microb. Technol. 12: 242-254
  2. Anthony, P., N. B. Jelodar, K. C. Lowe, J. B. Power, and M. R. Davey. 1996. Pluronic F-68 increases the post-thaw growth of cryopreserved plant cells. Cryobiology 33: 508- 514
  3. Buitelaar, R. M., E. J. T. M. Leenen, and J. Tramper. 1992. Growth and secondary metabolite production by hairy roots of Tagetes patula in aqueous two-phase systems. Biocatalysis 6: 73-80 https://doi.org/10.3109/10242429209014884
  4. Chattopadhaya, S., S. Farkya, A. K. Srivastava, and V. S. Visaria. 2002. Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnol. Bioprocess Eng. 7: 138-149
  5. Choi, Y. S., S. Y. Lee, and D. I. Kim. 1999. Cultivation of Digitalis lanata cell suspension in an aqueous two-phase system. J. Microbiol. Biotechnol. 9: 589-592
  6. Elibol, M. 1999. Mass transfer characteristics of yeast fermentation broth in the presence of Pluronic F-68. Process Biochem. 34: 557-561 https://doi.org/10.1016/S0032-9592(98)00126-5
  7. Hong, H.-J., J.-E. Lee, J.-E. Ahn, and D.-I. Kim. 1998. Enhanced production of digoxin by digitoxin biotransformation using in situ adsorption in Digitalis lanata cell culture. J. Microbiol. Biotechnol. 8: 478-483
  8. Hooker, B. S. and J. M. Lee. 1990. Cultivation of plant cells in aqueous two-phase polymer systems. Plant Cell Rep. 8: 546-549
  9. Jung, J.-H., D.-M. Shin, W.-C. Bae, S.-K. Hong, J.-W. Suh, S. Koo, and B.-C. Jeong. 2002. Identification of FM001 as plant growth-promoting substance from Acremonium strictum MJN1 culture. J. Microbiol. Biotechnol. 12: 327-330
  10. King, A. T., M. R. Davey, B. J. Mulligan, and K. C. Lowe. 1990. Effects of Pluronic F-68 on plant cells in suspension culture. Biotechnol. Lett. 12: 29-32
  11. Kumar, V., L. Laouar, M. R. Davey, B. J. Mulligan, and K. C. Lowe. 1992. Pluronic F-68 stimulates growth of Solanum dulcamara in culture. J. Exp. Bot. 43: 487-493
  12. Kwon, Y. J., R. Kaul, and B. Mattiasson. 1996. Extractive lactic acid fermentation in poly(ethyleneimine)-based aqueous two-phase system. Biotechnol. Bioeng. 50: 280-290
  13. Kwon, T.-H., Y.-M. Shin, Y.-S. Kim, Y.-S. Jang, and M.-S. Yang. 2003. Secretory production of hGM-CSF with a high specific biological activity by transgenic plant cell suspension culture. Biotechnol. Bioprocess Eng. 8: 135-141
  14. Lee, S.-Y., W. Hur, G.-H. Cho, and D.-I. Kim. 2001. Cultivation of transgenic Nicotiana tabacum suspension cells in bioreactors for the production of mGM-CSF. Biotechnol. Bioprocess Eng. 6: 72-74
  15. Lee, J.-H., J.-H. Kim, M.-R. Kim, S.-M. Kim, S.-W. Nam, J.-W. Lee, and S.-K. Kim 2002. Effect of dissolved oxygen concentration and pH on the mass production of high molecular weight pullulan by Aureobasidium pullulans. J. Microbiol. Biotechnol. 12: 1-7
  16. Lee, J.-H., N.-H. Loc, T.-H. Kwon, and M.-S. Yang. 2004. Partitioning of recombinant human granulocyte-macrophage colony stimulating factor (hGM-CSF) from plant cell suspension culture in PEG/sodium phosphate aqueous twophase culture. Biotechnol. Bioprocess Eng. 9: 12-16
  17. Lim, H. S., J. M. Lee, and S. D. Kim. 2002. A plant growthpromoting Pseudomonas fluorescence GL20: Mechanism for disease suppression, outer membrane receptors for ferric siderphore, and genetic improvement for increased biocontrol efficacy. J. Microbiol. Biotechnol. 12: 249-257
  18. Marco, R.-P. 2002. The practical application of aqueous twophase processes for the recovery of biological products. J. Microbiol. Biotechnol. 12: 535-543
  19. Morão, A., C. I. Maia, M. M. R. Fonseca, J. M. T. Vasconcelos, and S. S. Alves. 1999. Effect of antifoam addition on gas-liquid mass transfer in stirred fermenters. Bioprocess Eng. 20: 165-172
  20. Murhammer, D. W. and C. F. Goochee. 1988. Scaleup of insect cell cultures: Protective effects of Pluronic F-68. Bio/ Technology 6: 1411-1418
  21. Murhammer, D. W. and C. F. Goochee. 1990. Sparged animal cell bioreactors: Mechanism of cell damage and Pluronic F-68 protection. Biotechnol. Prog. 6: 391-397
  22. Palomares, L. A., M. González, and O. T. Ramírez. 2000. Evidence of Pluronic F-68 direct interaction with insect cells: Impact on shear protection, recombinant protein, and baculovirus production. Enzyme Microb. Technol. 26: 324- 331
  23. Prakash, G., S. S. Bhojwani, and A. K. Srivastava. 2002. Production of azadirachtin from plant tissue culture: State of the art and future prospects. Biotechnol. Bioprocess Eng. 7: 185-193
  24. Wu, J., Q. Ruan, and H. Y. P. Lam. 1997. Effects of surfaceactive medium additives on insect cell surface hydrophobicity relating to cell protection against bubble damage. Enzyme Microb. Technol. 21: 341-348
  25. Zijlstra, G. M., C. D. de Gooijer, L. A. van der Pol, and J. Tramper. 1996. Design of aqueous two-phase systems supporting animal cell growth: A first step toward extractive bioconversions. Enzyme Microb. Technol. 19: 2-8