Electroactive Polymer Composites as a Tactile Sensor for Biomedical Applications

  • Published : 2004.12.01

Abstract

Modem applications could benefit from multifunctional materials having anisotropic optical, electrical, thermal, or mechanical properties, especially when coupled with locally controlled distribution of the directional response. Such materials are difficult to engineer by conventional methods, but the electric field-aided technology presented herein is able to locally tailor electroactive composites. Applying an electric field to a polymer in its liquid state allows the orientation of chain- or fiber-like inclusions or phases from what was originally an isotropic material. Such composites can be formed from liquid solutions, melts, or mixtures of pre-polymers and cross-linking agents. Upon curing, a 'created composite' results; it consists of these 'pseudofibers' embedded in a matrix. One can also create oriented composites from embedded spheres, flakes, or fiber-like shapes in a liquid plastic. Orientation of the externally applied electric field defines the orientation of the field-aided self-assembled composites. The strength and duration of exposure of the electric field control the degree of anisotropy created. Results of electromechanical testing of these modified materials, which are relevant to sensing and actuation applications, are presented. The materials' micro/nanostructures were analyzed using microscopy and X-ray diffraction techniques.

Keywords

References

  1. W. Lehmann, H. Skupin, C. Tolksdorf, E. Gebhard, R. Zentel, P. Kruger, M. Losche, and F. Kremer, Nature, 410, 447 (2001)
  2. R. Pelrine, R. Kombluh, Q. B. Pei, and J. Joseph, Science , 287, 836 (2000)
  3. F. M. Guillot, J. Jarzynski, and E. Balizer, J. Acoustical Society of America, 110, 2980 (2001)
  4. G. H. Kim and Y. M. Shkel, J. Mater. Res., 19, 1164 (2004)
  5. C. P. Bowen, T. R. Shrout, R. E. Newnham, and C. A. Randall, J. Intel. Mater. Sys. Struct., 6, 159 (1995) https://doi.org/10.1177/1045389X9500600203
  6. C. P. Bowen, R. E. Newnham, and C. A. Randall, J. Mat. Res., 13, 205 (1998)
  7. M. Hase, M. Egashira, and N. Shinya, J. Intel. Mater. Sys. Struct., 10,508 (1999)
  8. B. Liu and M. T. Shaw, J. Rheol., 45, 641 (2001)
  9. G. H. Kim and Y. M. Shkel, J. Intel. Mater. Sys. Struct., 13, 479 (2002)
  10. A. T. Horvat, D. J. Klingenberg, and Y. M. Shkel, Int. J. Mod. Phys. ,B, 16, 2690 (2002) https://doi.org/10.1142/S0217979202012852
  11. Y.M. Shkel and D. J. Klingenberg, J. Rheol., 45, 1307 (1999). 447 (2001)
  12. Y. M. ShkeI and D. J. Klingenberg, J. Appl. Phys., 80, 4566 (1996).
  13. J. E. Martin and R. A. Anderson, J. Chefη Phys.,111 4273 (1999)
  14. J. A. Stratton, Electromagnetic Theory; McGraw-Hill, New York, 1941
  15. L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous Media , Pergamon, New York, 1984
  16. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (with special applications to particulate media), Prentice-Hall, 1965
  17. R. E. Peterson, Stress Concentrations, Wiley, New York, 1974
  18. B. J. Rauch and R. E. Rowlands, Thermoelastic Stress Analysis, Handbook on Experimental Mechanics, A. S. Kobayashi, Ed., VCH Publishers, New York, 1993, pp 581-599.
  19. T. R. Filanc-Bowen, G. H. Kim, and Y. M. Shkel, Preceeding of SPIE, 5051, 218 (2003)
  20. T. R. Filanc-Bowen, G. H. Kim, and Y. M. Shkel, IEEE Int Conf. Sensors, 2, 1648 (2002).