Thermal Environment Characteristics of Permeable Cement Concrete Pavement( I )

$\cdot$보수성 시멘트 콘크리트 포장의 열환경 특성( I )

  • Ryu Nam-Hyong (Dept. of Landscape Architecture, Jinju National Univ.) ;
  • Yoo Byung-Rim (Graduate School of Environment Studies, Seoul National Univ.)
  • 류남형 (진주산업대학교 조경학과) ;
  • 유병림 (서울대학교 환경대학원)
  • Published : 2005.02.01

Abstract

This study was undertaken to measure and analyze the thermal environment characteristics of the grey permeable cement concrete pavement(GPCCP), the permeable cement concrete brick pavement(PCCBP) compared with impermeable cement concrete pavement(ICCP) and bare soil(BS) under the summer outdoor environment. Following is a summary of major results. 1) The peak surface temperature was greatest in the GPCCP$(54.2^{\circ}C)$ followed by ICCP$(47.2^{\circ}C)$ rut August 2, 2002, the hottest day$(35.3^{\circ}C\;of\;highest\;temperature)$ during the experiment; peak temperature in the ICCP and BS were $45.5^{\circ}C)$ and $45.3^{\circ}C)$ respectively. 2) Analysis of heat budget of the pavements has revealed that the heat environment was worse in the GPCCP than that in the ICCP and that this was mainly due to a low albedo in the former(0.2) relative to that of the latter(0.4). 3) Analysis of heat budget of the pavements has revealed that the heat environment was worse in the GPCCP than that in the PCCBP, BS and that this was mainly due to a decreased latent heat resulting from a time dependent decreasing impact of rainfall. 4) It is necessary to make cool pavements to further studies on light-colored surface materials for attaining high albdo and construction methods which can enhance the latent heat through the continuous evaporation from pavements surface. 5) Vertical arrangement of pavement layers has not been considered in the present study, which has been focuses on the heat characteristics of the surface layer materials. Accordingly, future studies will have to be empasized on pavement methods including the vertical arrangement of the pavement layers.

Keywords

References

  1. 高木內 豪, 小林裕明(1999) 快適な都巿環境創造のための餔裝の高溫化抑制策に關する檢討. 土木學會論文集 622(VII-11): 23-33
  2. 福田萬代. 深澤邦彥. 荒木美民. 藤野毅, 淺枝隆(1997) 夏秀自 然狀態での名種鋪裝の熱環境緩和特性に關する實驗的硏究. 土木學會論文集 571(V-36): 149-158
  3. 福田萬代, 越川喜孝, 辻井 豪, 淺枝隆, 藤野毅(1999a) 夏季に給. 散水した保水性鋪裝の熱環境緩和特性に關する實驗的硏究. 土木學會論文集 613(V-42) : 225-236.
  4. 福田萬代, 淺枝隆, 藤野毅(1999b) 夏季に給. 散水した冬季自然狀態における保水性鋪裝の熱環境緩和特性に關する實驗的硏究. 土木學會論文集 634(V-45) : 243-254
  5. 西岡 眞捻, 鍋島美奈子, 三木信博, 津鄕俊二(2002) 保水性鋪裝 材料の熱的性能に關する實驗(その2). 日本建築學會大學術講演梗槪集(北陛). 565-566
  6. 成田健一, 關根 毅(1991) アスファルト鋪裝面の表面溫度と熱收支の解析. 地理學評論 64(A-2): 125-137
  7. 神田 學, 土屋信夫(1995) 微氣象に基ついた屋外における人體の熱環境解釋. 土木學會論文集 509(II-30): 53-44
  8. 越川喜孝, 遷井 豪, 吉田健二(2001) 透水性を有する保水性鋪裝に關する檢討. 土木學會第 回年次學術講演會 V-088: 176
  9. 伊藤幸廣, 松清誠司, 辻 正哲(1996) 地表面溫度低減機能を有するインターロツキングブロツク鋪裝に關する研究. 土木學會論文集 544(V-32): 11-20
  10. 赤川宏幸, 小宮英孝(2000) 表面を連續的に濕潤できる鋪裝體に關する實驗的研究. 日本建築學會計劃系論文集 530: 79-85
  11. 淺枝 隆. ヴタンカ. 北原正代(1991) 道路鋪裝の熱環境に及ぽす影響. 環境ツステム研究 13: 89-93
  12. Asaeda, T., V. T. Ca, and A. Wakio.(1996) Heat Storage of Pavement and Its Effect on the Lower Atmosphere. Atmospheric Environment 30(3): 413-427 https://doi.org/10.1016/1352-2310(94)00140-5
  13. Asaeda, T. and V. T. Ca(2000) Characteristics of permeable pavement during hot summer weather and Impact on the thermal environment. Building and Environment 35: 363-375 https://doi.org/10.1016/S0360-1323(99)00020-7
  14. Alvenas. G.. and P-E. Jansson(1997) Model for evaporation, moisture and temperature of bare soil:calibration and sensivity analysis. Agricultural and Forest Meterology 88: 47-56. https://doi.org/10.1016/S0168-1923(97)00052-X
  15. Ghafoori. N.. and S. Dutta(1995) Laboratory Investigation of Compacted No-Fines Concrete Pavement for Paving Materials. Journal of Materials in Civil Engineering. 7(3): 183-191 https://doi.org/10.1061/(ASCE)0899-1561(1995)7:3(183)
  16. Hagishima. A.. and J. Tanimoto(2003) Field measurements for estimating the convective heat transfer coefficient at building surfaces. Building and Environment 38: 873-88 https://doi.org/10.1016/S0360-1323(03)00033-7
  17. Mayocchi. C. L.. and K. L. Bristow(1995) Soil surface heat flux: some general questions and comments on meas-urements. Agricultural and Forest Meteorology 75:43-50 https://doi.org/10.1016/0168-1923(94)02198-S
  18. Myers. G. E.(1971) Analytical Methods in conduction heat transfer. McGraw-Hill: 263-293
  19. Oliveti. G., &. N. Arcuh, and S. Ruffolo(2003) Expehmental investigation on thermal radiation exchange of horizontal outdoor surfaces. Building and Environment. 83: 83-89
  20. Pomerantz. M., B. Pon. H. Akbari and S. C. Chang (2000) The Effect of Pavement's Temperatures on Air Tempe-rature in Large Cities. Berkleym CA:Lawrence Berkldey National Laboratory. LBNL-434
  21. Porte-Agel, F., M. B. Parlange, A. T. Cahill and A. Gruber (2000) Mixture of time scales in evaporation : Desorption and self-similarity of energy fluxes. Agronomy Journal 92: 832-836 https://doi.org/10.2134/agronj2000.925832x
  22. Qin, Z., P, Berliner. and A. Karnieli(2002) Numerical solu-tions of a complete surface energy balance model for simulation of heat fluxes and surface temperature under bare siol environment. Applied Mathmatics and Computa-tion 130: 171-200 https://doi.org/10.1016/S0096-3003(01)00089-3
  23. Warrick, A. W.(2002) Soil Physics Companion. CRC Press
  24. Yamanaka, T., and T. Yonetani(1999). Dynamics of the evaporation zone in dry sandy soils. Journal of Hydrology 217: 135-148 https://doi.org/10.1016/S0022-1694(99)00021-9