Implementation of Strain Imaging Modality in Medical Ultrasonic Imaging System

초음파 의료 영상 시스템에서 탄성 영상의 구현

  • Yoon Ra-Young (Research Center, Medison Co., Ltd.) ;
  • Kwon Sung-Jae (Depts. of Comm. and Elec. Eng., Daejin University) ;
  • Bae Moo-Ho (Div. of Info. Eng. & Telecommunications, Hallym University) ;
  • Jeong Mok-Kun (Depts. of Comm. and Elec. Eng., Daejin University)
  • 윤라영 ((주)메디슨 연구소) ;
  • 권성재 (대진대학교 통신공학과, 전자공학과) ;
  • 배무호 (한림대학교 정보통신공학과) ;
  • 정목근 (대진대학교 통신공학과, 전자공학과)
  • Published : 2005.05.01

Abstract

This paper proposes a method of measuring and visualizing the elasticity distribution of the human soft tissue to detect tumors or cancers which have been difficult to diagnose in conventional medical ultrasonic B-mode images. To measure the stiffness of soft tissue, first, pressure is applied to deform the tissue being imaged, and then the amount of mechanical displacement is determined from correlation coefficients obtained from ultrasonic data downconverted into the baseband. We confirmed the feasibility of imaging tissue stiffness by computer simulation and experiment.

본 논문에서는 초음파 의료 영상 시스템의 B-모드 영상에서 잘 관찰되지 않는 암이나 종양을 진단하기 위하여 인체 연조직의 탄성계수를 측정하여 영상화 하는 방법을 제안하였다. 연조직의 단단함을 측정하기 위하여 조직에 변위를 주기 위한 압력을 인가하고 연조직의 기계적인 변형의 크기를 기저대역으로 복조한 초음파 데이터로부터 상관계수를 계산하여 구하였다. 제안한 방법으로 조직의 탄성을 영상화할 수 있음을 컴퓨터 시뮬레이션과 실험을 통하여 확인하였다.

Keywords

References

  1. T. Sato, Y. Yamakoshi, and T. Nakamura, 'Nonlinear tissue imaging,' Proc. IEEE Ultrasonics Symposium, pp. 889-900, 1986
  2. D. Yanwa, T. Jia, and S. Yongchen, 'Relations between the acoustic nonlinearity parameter and sound speed and tissue composition,' Proc. IEEE Ultrasonics Symposium, pp. 931-934, 1987
  3. P. He and A. McGoron, 'Parameter estimation for nonlinear frequency dependent attenuation in soft tissue,' Ultrasound in Medicine and Biology, vol. 15, no. 8, pp. 757-763, 1989 https://doi.org/10.1016/0301-5629(89)90116-6
  4. Y. Hayakawa, T. Wagar, K. Yosioka, T. Inada, T. Suzuki, H. Yagami, and T. Fujii, 'Measurement of ultrasound attenuation coefficient by a multifrequency echo technique-Theory and basic experiments,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 33, no. 6, pp. 759-763, 1986 https://doi.org/10.1109/T-UFFC.1986.26893
  5. J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, 'Elastography: A quantitative method for imaging the elasticity of biological tissues,' Ultrasonic Imaging, vol. 13, pp. 111-134, 1991 https://doi.org/10.1016/0161-7346(91)90079-W
  6. M. O'Donnell, A. R. Skovoroda, S. Y. Emilianov, M.A. Lubinski, and A.P. Sarvazyan, 'Theoretical analysis and verification of ultrasound displacement and strain imaging,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 41, no. 3, pp. 302-313, 1994 https://doi.org/10.1109/58.285463
  7. M. O'Donnell, M. A. Lubinski, and S. Y. Emelianov, 'Speckle tracking methods for ultrasonic elasticity imaging using short-time correlation,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 46, no. 1, pp. 82-96, 1999 https://doi.org/10.1109/58.741427
  8. T. Shiina, M. M. Doyley, and J. C. Bamber, 'Strain imaging using combined RF and envelope autocorrelation processing,' Proc. IEEE Ultrasonics Symposium, 1996 https://doi.org/10.1109/ULTSYM.1996.584292
  9. T. Shiina, N. Nitta, M. Yamakawa, E. Ueno, M.M. Doyley, and J.C. Bamber, 'Tissue elasticity imaging based on combined autocorrelation method and 3-D tissue model,' Proc Ultrasonics Symposium, 1998 https://doi.org/10.1109/ULTSYM.1998.765216
  10. T. Shiina, N. Nitta, E. Ueno, and J. C. Bamber, 'Real time tissue elasticity imaging using the combined autocorrelation method,' Journal of Medical Ultrasonics, vol. 29, pp. 119-128, 2002 https://doi.org/10.1007/BF02481234
  11. A. Pesavento, C. Perrey, M. Krueger, and H. Ermert, 'A time-efficient and accurate strain estimation concept for ultrasonic elastography using iterative phase zero estimation,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 46, no. 5, pp. 1057-1067, 1999 https://doi.org/10.1109/58.796111
  12. J. Ophir and I. Cespedes, 'Reduction of image noise in elastography,' Ultrasonic Imaging, vol. 15, pp. 89-102, 1993 https://doi.org/10.1006/uimg.1993.1008
  13. 조개영, '의용초음파 영상시스템에서 탄성 영상을 실시간으로 구현하기 위한 연구,', 대진대학교 석사학위논문, 2003
  14. F. Kallel and M. Bertrand, 'A note on strain estimation using correlation techniques,' Proc. IEEE Ultrasonics Symposium, 1993 https://doi.org/10.1109/ULTSYM.1993.339664
  15. T. Varghese, J. Ophir, E. Konofagou, F. Kallel, and R. Righetti, 'Tradeoffs in elastographic imaging,' Ultrasonic Imaging, vol. 23, pp. 216-248, 2001 https://doi.org/10.1177/016173460102300402
  16. J. Ophir and F. Kallel, 'A least-squares strain estimator for elasography,' Ultrasonic Imaging, vol. 19, pp. 195-208, 1997
  17. I. Cespedes, M. Insana, and J. Ophir, 'Theoretical bounds on strain estimation in elastography,' IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 42, no. 5, pp. 969-972, Sept. 1995 https://doi.org/10.1109/58.464850