A Study on the PM2.5 Source Characteristics Affecting the Seoul Area Using a Chemical Mass Balance Receptor Model

수용모델을 이용한 서울지역 미세입자 (PM2.5)에 영향을 미치는 배출원 특성에 관한 연구

  • Lee Hak Sung (Department of Environmental, Civil and Information System, Seowon University) ;
  • Kang Choong-Min (Department of Environmental Health, Harvard School of Public Health, Harvard University) ;
  • Kang Byung-Wook (Department of Environmental Industry, Chongju National College of Science and Technology) ;
  • Lee Sang-Kwun (Department of Environmental Science, Hankuk University of Foreign Studies)
  • 이학성 (서원대학교 환경건설정보학과) ;
  • 강충민 (Harvard 보건대학원) ;
  • 강병욱 (국립청주과학대학 환경공업과) ;
  • 이상권 (한국외국어대학교 환경학과)
  • Published : 2005.06.01

Abstract

The purpose of this study is to study the $PM_{2.5}$ source characteristics affecting the Seoul area using a chemical mass balance (CMB) receptor model. This study was also to evaluate the $PM_{2.5}$ source profiles, which were directly measured and developed. Asian Dust Storm usually occurred in the spring, and very high $PM_{2.5}$ concentrations were observed in the fall among the sampling periods. So the ambient data collected in the spring and fall were evaluated. The CMB model results as well as the $PM_{2.5}$ source profiles were validated using the diagnostic categories, such as: source contribution estimate, t-statistic, R-square, Chi-square, and percent of total mass explained. In the spring months, the magnitude of $PM_{2.5}$ mass contributors was in the following order: Chinese aerosol $(31.7\%)>$ secondary aerosols ($22.3\%$: ammonium sulfate $13.4\%$ and ammonium nitrate $8.9\%)>$ vehicles ($16.1\%$: gasoline vehicle $1.4\%$ and diesel vehicles $14.7\%)>$biomass burning $(15.5\%)>$ geological material $(10.5\%)$. In the fall months, the general trend of the $PM_{2.5}$ mass contributors was the following: biomass burning $(31.1\%)>$ vehicles ($26.9\%$: gasoline vehicle $5.1\%$ and diesel vehicles $21.8\%)>$ secondary aerosols ($23.0\%$: ammonium sulfate $9.1\%$ and ammonium nitrate $13.9\%)>$ Chinese aerosol $(10.7\%)$. The results show that the $PM_{2.5}$ mass in the Seoul area was mainly affected by the Chinese area.

Keywords

References

  1. 강병옥, 이학성, 김희강(2000) 수용모델을 이용한 청주시 미세입자($PM_{2.5}$)의 기여도 측정, 한국대기환경학회지,16(5),477-485
  2. 강병욱, 이학성, 김희강 (1997) PIXE를 이용한 청주지역 미세입자 중 원소의 계절 변동 특성,한국대기환경 학회지,13(4),307-317
  3. 강충민 (2003a) 서울시 미세입자 특성 및 CMB모델을 이용 한 배출원 기여도 산정에 관한 연구, 건국대학교 박사학위논문
  4. 강충민 (2003b) 서울시 미세입자 특성 및 CMB모델을 이용 한 배출원 기여도 산정,2003년도 한국대기환경학회 춘계학술대회 논문집,57-58
  5. 김기현, 김민영, 신재영, 최규훈, 강창희 (2002) $PM_{2.5}$, $PM_{10}$, TSP의 시간대별 관측결과에 기초한 황사기간 충 분진의 분포특성에 대한 고찰 서울시의 4대 관 측점을 중심으로 한 2001년 봄철 황사 기간에 대한 사례연구, 한국대기환경학회지, 18(5),419-426
  6. 서울시 환경백서(2003)
  7. 서울시 홈페이지 (2004) http://www.seoul.go.kr
  8. 이학성, 강충민, 강병옥, 이상권 (2004) 미세입자($PM_{2.5}$)의 배 출원 구성물질 성분비 개발에 관한 연구, 한국대기환경학회지,20(3) 317-330
  9. 이학성, 강병옥 (2000) 미세입자($PM_{2.5}$)에 포함된 탄소농도 계절 특성, 한국대기환경학회지,16(2) 103-112
  10. 이학성, 강병욱(1996) 디누더 측정기를 이용한 여름철 청주 시의 산성오염물질 측정과 분석, 한국대기보전학회지,12(4),441-448
  11. Chan, Y.C., R.W. Simpson, G.H. Mctainsh, P.D. Vowles, D.D. Cohen, and G.M. Bailey (1999) Source apportionment of $PM_{2.5}$and $PM_{10}$ aerosols in Brisbane (Australia) by receptor modelling, Atmos. Environ., 33(1999), 3251-3268 https://doi.org/10.1016/S1352-2310(99)00090-4
  12. Chen, K.S., C.F. Lin, and Y.M. Chou (2001) Determination of source contributions to ambient $PM_{2.5}$ in Kaohsiung, Taiwan, using a receptor model, J. Air & Waste Manage. Assoc., 51,489-498 https://doi.org/10.1080/10473289.2001.10464287
  13. Chow, J.C., J.G. Watson, D.H. Lowenthal, and R.J. Countess (1996) Source and chemistry of $PM_{10}$ aerosol in Santa Barbara county, CA, Atmos. Environ., 30(9), 1489- 1499 https://doi.org/10.1016/1352-2310(95)00363-0
  14. Chung, Y.S. and M.B. Yoon (1994) On the occurrence of yellow sand and atmospheric loadings, Atmos. Environ., 30(13), 233-244
  15. Conner ,W.D., R.L. Bennett, W.S. Weathers, and W.E. Wilson (1991) Particulate characteristics and visual effects of the atmosphere at Research Triangle Park, J. Air & Waste Manage. Assoc., 41(2), 154-160 https://doi.org/10.1080/10473289.1991.10466832
  16. Dockery, D.W., J. Chunningham, A.I. Damokosh, L.M. Neas, J.D. Spengler, P. Koutrakis, J.H. Ware, M. Raizenne, and F.E. Speizer (1996) Health effects of acid aerosols on north American children: Respiratory symptoms, Environ. Health Perspect., 104(5), 500-505 https://doi.org/10.2307/3432990
  17. Duan, F., X. Liu, T. Yu, and H. Cachier (2004) Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing, Atmos. Environ., 38, 1275-1282 https://doi.org/10.1016/j.atmosenv.2003.11.037
  18. He, K., F. Yang, Y. Ma, Q. Zhang, X. Yao, C.K. Chan, S. Cadle, T. Chan, and P. Mulawa (2001) The characteristics of $PM_{2.5}$ in Beijing, China, Atmos. Environ., 35, 4959-4970 https://doi.org/10.1016/S1352-2310(01)00301-6
  19. Kang, C.M., Y. Sunwoo, H.S. Lee, B.W. Kang, and S.K. Lee (2004a) Atmospheric concentrations of $PM_{2.5}$ trace elements in the Seoul urban area of South Korea, J. Air & Waste Manage. Assoc., 54, 432-439 https://doi.org/10.1080/10473289.2004.10470916
  20. Kang, C.M., H.S. Lee, B.W. Kang, S.K. Lee, and Y. Sunwoo (2004b) Chemical characteristics of acidic gas pollutants and $PM_{2.5}$ species during hazy episodes in Seoul, South Korea, Atmos. Environ., 38, 4749-4760 https://doi.org/10.1016/j.atmosenv.2004.05.007
  21. Lee, H.S. and B.W. Kang (2001) Chemical characteristics of principal $PM_{2.5}$ species in Chongju, South Korea, Atmos. Environ., 35,739-746 https://doi.org/10.1016/S1352-2310(00)00267-3
  22. Lee, H.S., R.A. Wadden, and P.A. Scheff (1993) Measurement and evaluation of acid air pollutants in Chicago using an annular denuder system, Atmos. Environ., 27A(4), 543-553
  23. Malm, W.C. and K.A. Gebhart (1996) Source apportionment of organic and light absorbing carbon using receptor modeling techniques, Atmos. Environ., 30 (6). 843-855 https://doi.org/10.1016/1352-2310(95)00356-8
  24. Park, S.S. and Y.J. Kim (2004) $PM_{2.5}$ particles and sizesegregated ionic species measured during fall season in three urban sites in Korea, Atmos. Environ., 38, 1459-1471 https://doi.org/10.1016/j.atmosenv.2003.12.004
  25. Park, S.S., M.S. Bae, and Y.J. Kim (2001) Chemical composition and source apportionment of $PM_{2.5}$ particles in the Sihwa area, Korea, J. Air & Waste Manage. Assoc., 51,393-405 https://doi.org/10.1080/10473289.2001.10464277
  26. Seinfeld, J.H. (1986) Atmospheric chemistry and physics of air pollution, Wiley Interscience, New York, NY
  27. Spengler, J.D., M. Brauer, and P. Koutrakis (1990) Acid air and health, Environ. Sci. Technol., 24(7), 946-956 https://doi.org/10.1021/es00077a002
  28. Wadden, R.A., H.S. Lee, P.A. Scheff, and J. Lin (1993) Sulfur and nitrogen balances for the Chicago area by receptor modeling, presentation at the 86nd Annual Meeting of Air & Waste Manage. Assoc., Denver, Colorado, June 93-TP-41B.05
  29. Watson, J.G. and J.C. Chow (2001) Source characterization of major emissions sources in the Imperial and Mexicali Valleys along the U.S./Mexico border, The Sci. of The Total Environ., 276, 33-47 https://doi.org/10.1016/S0048-9697(01)00770-7
  30. Watson, J.G., N.F. Robinson, C. Lewis, and T. Coulter (1997) Chemical mass balance receptor model version 8 (CMBS) user's manual, U.S. EPA/DRI
  31. Watson, J.G., J.C. Chow, Z. Lu, E.M. Fujita, D.H. Lowenthal, and D.R. Lawson (1994) Chemical mass balance source apportionment of $PM_{10}$ during the Southern California Air Quality Study, Aerosol Sci. Technol., 21, 1-36 https://doi.org/10.1080/02786829408959693
  32. Zelenka, M.P., W.E. Wilson, J.C. Chow, and P.J. Lioy (1994) A combined TTFA/CMB receptor modeling approach and its application to air pollution sources in China, Atmos. Environ., 28(8), 1425-1434 https://doi.org/10.1016/1352-2310(94)90205-4