Sulfate Reduction and Origin of Organic Matter in the Ulleung Basin, East Sea

동해 울릉분지에서의 황산염 환원작용과 유기물의 기원

  • Park Myong-Ho (Technical Department, Korea National Oil Corporation) ;
  • Kim Ji-Hoon (Petroleum and Marine Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Ryu Byong-Jae (Petroleum and Marine Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Kim Il-Soo (Domestic Exploration Team I, Korea National Oil Corporation) ;
  • Lee Youngju (Petroleum and Marine Resources Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Chang Ho-Wan (School of Earth and Environmental Science, Seoul National University)
  • 박명호 (한국석유공사 기술실) ;
  • 김지훈 (한국지질자원연구원 석유해저자원연구부) ;
  • 류병재 (한국지질자원연구원 석유해저자원연구부) ;
  • 김일수 (한국석유공사 대륙봉탐사처) ;
  • 이영주 (한국지질자원연구원 석유해저자원연구부) ;
  • 장호완 (서울대학교 지구환경과학부)
  • Published : 2005.06.01

Abstract

In this study, core sediments and pore water were analysed to identify the origin of organic matter and Bas in late Quaternary sediments from the northwestern Ulleung Basin of the East Sea. C/N and C/S ratios in the sediments show that the organic matter in the study area originated predominantly from marine algae. However, the results of Rock-Eval pyrolysis indicate that the organic matter has an origin of the land-plant (Type III), locating in the immature stage. These different results might be due to the heavy oxidizing of the organic matter during sinking down to the seafloor or after deposition in the sediments. Concentration of sulfate in the pore water decreases gradually with core depth, while concentration of $CH_4$ increases gradually with core depth. This indicates that sulfate reduction and methanogenesis occurred actively in the sediments. Also, it is likely that the compositions of $CH_4$ are characterized as a more biogenic origin, mostly caused by microbial activity, rather than a thermogenic one.

이 연구에서는 동해 울릉분지 북서부해역의 제4기 후기 퇴적물 내의 유기물과 가스의 기원을 규명하기 위해서 천부 퇴적물과 공극수를 분석하였다. 연구지역에서 채취한 코어퇴적물을 원소 분석한 결과, C/N 및 C/S 비$(wt.\;\%)$는 퇴적물 내 유기물이 주로 해양조류 기원을 가지고, 일반적인 해양 또는 정체 환경에서 퇴적되었음을 지시한다 그러나 열분석 결과는 유기물 기원이 육상식물이고, 열적 성숙단계가 미성숙단계임을 보여준다. 이러한 원소분석과 열분석간의 관계는 유기물이 침강하는 동안 또는 퇴적 후 이루어진 강한 산화작용에 기인한 것으로 추정된다. 퇴적물 내 공극수와 공기층 가스의 분석을 통하여 매몰심도가 증가할수록 $SO_4\;^{2-}$농도는 감소하고, 공기층 가스의 주성분인 $CH_4$의 양이 증가한다는 것을 알 수 있었다 이것은 코어퇴적물에서 미생물과 관련된 황산염 환원작용이 일어났으며, 점진적으로 메탄생성단계로 전이가 일어났음을 의미한다. 또한 $CH_4$의 성분은 열기원보다는 생물기원임을 가리킨다.

Keywords

References

  1. 김일수, 박명호, 이영주, 류병재, 유강민 (2003) 울릉분지 남서부 해역의 제4기 후기 퇴적환경에 대한 지질.지화학적연구. 자원환경지질, 36권, p. 9-15
  2. 박명호, 류병재, 김일수, 정태진, 이영주, 유강민 (2002) 울릉분지 남서부 해역의 천부퇴적물에 대한 층서.퇴적학적 연구. 자원환경지질, 35권, p. 171-177
  3. 박명호, 김지훈, 김일수, 류병재, 송윤구 (2004) 북서부 울 릉분지 코어퇴적물의 테프라층서와 유공충연니. 고생물학회지, 20권, p. 115-125
  4. 차현주 (2002) 동해 남서해역 퇴적물의 지구화학적 특성과 인의 재분포. 서울대학교 박사학위논문, 191 p
  5. 한상준, 김한준, 허 식, 박찬홍, 김성렬, 이용국, 유해수, 최동림, 박병권 (1997) 동해 울릉분지 북동부 (울릉도와 독도 주변) 해역의 분지구조. 지질학회지, 33권, p.127-138
  6. Berner, R.A. (1984) Sedimentary pyrite formation: an update. Geochim. Cosmochim. Acta, v. 48, p. 605-615 https://doi.org/10.1016/0016-7037(84)90089-9
  7. Berner, R.A. and Raiswell, R. (1983) Burial of organic carbon and pyrite sulfur in sediments over Phanerozoic time: a new theory. Geochim. Cosmochim. Acta, v. 47, p. 855-862 https://doi.org/10.1016/0016-7037(83)90151-5
  8. Berner, R.A. and Raiswell, R. (1984) C/S method for distinguishing freshwater from marine sedimentary rocks. Geology, v. 12, p. 365-368 https://doi.org/10.1130/0091-7613(1984)12<365:CMFDFF>2.0.CO;2
  9. Borowski, W.S., Paul, C.K. and Ussler III., W. (1999) Glogbal and local variations of interstitial sulfate gradients in deep-water, continental margin sediments: Sensitivity to underlying methane and gas hydrates. Mar. Geol., v. 159, p. 131-154 https://doi.org/10.1016/S0025-3227(99)00004-3
  10. Canfield, D.E. and Raiswell, R. (1991) Pyrite formation and fossil reservation. In Allison, P.A. and Briggs, D.E.G. (eds.) Topics Geobiol. vol. 9. Plenum, New York, p. 337-387
  11. Chester, R. (2000) Marine Geochemistry. Blackwell, London, 506 p
  12. Chough, S.K., Lee, H.J. and Yoon, S.H. (2000) Marine Geology of Korean Seas. Elsevier, Amsterdam, 313 p
  13. Chun, J.H., Ikehara, K. and Han, S.J. (2004) Evidence in Ulleung Basin sediment cores for a Termination II (penultimate deglaciation) eruption of the Aso-3 tephra. Quat. Res. (Japan), v. 43, p. 99-112 https://doi.org/10.4116/jaqua.43.99
  14. Espitalie, J., Laporte, J.L., Madec, M., Marquis, F., Leplat, P., Paulet. J. and Boutefeu, A. (1977) Methode rapide de caracterisation des roches meres, de leur potential petrolier et de leur degre d'evolution. Rev. Inst. Francais Petrole., v. 32, p. 23-42 https://doi.org/10.2516/ogst:1977002
  15. Espitalié, J., Deroo, G. and Marquis, F. (1985) La pyrolysis Rock-Eval et ses applications: Rev. Inst. Francais Petrole., v. 40, p. 563-579
  16. Fauville, A., Mayer, B., Frommichen, R., Friese, K. and Veizer, J. (2004) Chemical and isotopic evidence for accelerated bacterial sulphate reduction in acid mining lakes after addition of organic carbon: laboratory batch experiments. Chem. Geol., v. 204, p. 325-344 https://doi.org/10.1016/j.chemgeo.2003.11.010
  17. Ganeshram, R.S., Calvert, S.E., Pedresen, T.F. and Gowie, G.L. (1999) Factors controlling the burial of organic carbon in laminated and bioturbated sediments off NW Mexico: Implications for hydrocarbon preservation. Geochim. Cosmochim. Acta, v. 63, p. 1723-1734 https://doi.org/10.1016/S0016-7037(99)00073-3
  18. Gieskes, J.M., Gamo, T. and Brumsack, H. (1991) Chemical methods for interstitial water analysis aboard JOIDES resolution. Technical Note 15, Ocean Drilling Program, Texas A&M Univ
  19. Hunt, J.M. (1996) Petroleum Geochemistry and Geology. Freeman, New York, 743 p
  20. Kim, G.Y., Kim, D.C., Shin, I.C. and Park, S.C. (1998) Latest Quaternary environmental history in the East Sea. J. Paleont. Soc. Korea, v. 14, p. 200-216
  21. Kim, J.H., Ryu, B.J., Cheong, T.J., Lee, Y.J., Park, M.H., Kim, I.S. and Chang, H.W. (2003) Geochemical study on the sediments in the western Ulleung Basin of the East Sea. International Symposium on Gas Hydrate, Qindao in China, p. 8-9
  22. Kim, J.H., Park, M.H., Ryu, B.J. and Chang, H.W. (2004) The reduction stage and SMI depth in the Ulleung Basin, East Sea. Proceeding, J. Geol. Soc. Korea, p. 92
  23. Kim, J.M. (1999) Early Neogene biochemostratigraphy of Pohang Basin: A paleoceanographic response to the early opening of the Sea of Japan (East Sea). Mar. Micropaleont., v. 36, p. 269-290 https://doi.org/10.1016/S0377-8398(99)00006-7
  24. Kim, J.M., Kennett, J.P., Park, B.K., Kim, D.C., Kim, G.Y. and Roark, E.B. (2000) Paleoceanographic change during the last deglaciation, East Sea of Korea. Paleoceanography, v. 15, p. 254-266 https://doi.org/10.1029/1999PA000393
  25. Louvat, D., Michelot, J.L. and Aranyossy, J.F. (1999) Origin and residence time of salinity in the Aspo groundwater system. Appl. Geochem., v. 14, p. 917-925 https://doi.org/10.1016/S0883-2927(99)00026-8
  26. Machida, H. and Arai, F. (1992) Atlas of Tephra in and around Japan. Univ. Tokyo Press, 276 p
  27. Meyers, P.H., Sillima, J.E. and Shaw, T.J. (1996) Effects of turbidity flows on orgnice matter accumulation, sulfate reduction, and methane generation in deep-sea sediments on the Iberia Abyssal Plain. Org. Geochem., v. 25, p. 69-78 https://doi.org/10.1016/S0146-6380(96)00106-4
  28. Miukhopadhyay, P.K., Wade, J.A. and Kruge, M.A. (1995) Organic facies and maturation of Jurassic/Cretaceous rocks, and possible oil-source rock correlation based on pyrolysis of asphaltenes, Scotian Basin, Canada. Org. Geochem., v. 22, p. 85-104 https://doi.org/10.1016/0146-6380(95)90010-1
  29. Miyairi, Y., Yoshida, K., Miyazaki, Y., Matsuzaki, H. and Kaneoka, I. (2004) Improved 14C dating of a tephra layer (AT tephra, Japan) using AMS on selected organic fractions. Nucl. Instr. Meth. B, v. 223-224, p. 555-559
  30. Muller, P.J. (1977) C/N ratios in Pacific deep-sea sediments; effect of inorganic ammonium and organic nitrogen compounds sorbed by clays. Geochim. Cosmochim. Acta, v. 41, p. 765-776 https://doi.org/10.1016/0016-7037(77)90047-3
  31. Park, M.H., Kim, I.S. and Ryu, B.J. (2003) Framboidal pyrites in late Quaternary core sediments of the East Sea and their paleoenvironmental implications. Geosciences J., v. 7, p. 209-215 https://doi.org/10.1007/BF02910287
  32. Park, M.H., Kim, J.H., Kim, I.S. and Ryu, B.J. (2004) AMS radiocarbon dating and tephrostratigraphy of late Quaternary core sediments in the northwestern Ulleung Basin, East Sea. Proceeding, J. Geol. Soc. Korea, p. 156
  33. Prahl, F.G., Ertel J.R., Goni., M.A., Sparrow, M.A. and Eversmeyer, E. (1994) Terrestrial organic carbon contributions to sediments on the Washington margin. Geochim. Cosmochim. Acta, v. 58, p. 3055-3048
  34. Premuzic, E.T., Benkovitz, C.M., Gaffney, J.S. and Walsh, J.J. (1982) The nature and distribution of organic matter in the surface sediments of world oceans and seas. Org. Geochem., v. 4, p. 63-47 https://doi.org/10.1016/0146-6380(82)90009-2
  35. Silliman, J.E., Meyers, P.A. and Bourbonniere, R.A. (1996) Record of postglacial organic matter deliverly and burial in sediments of Lake Ontario. Org. Geochem., v. 24, p. 43-472 https://doi.org/10.1016/0146-6380(96)00007-1
  36. Stevenson F.J. and Cheng, C.N. (1972) Organic geochemistry of the Argentine Basin Sediments; Carbon-nitrogen relationships and Quaternary correlations. Geochim. Cosmochim. Acta, v. 36, p. 653-671 https://doi.org/10.1016/0016-7037(72)90109-3
  37. St-Onge, G. and Hillaire-Marcel, C. (2001) Isotopic constraints of sedimentary inputs and Organic carbon burial rates in the Saguenay Fjord, Quebec. Mar. Geol., v. 176, p. 1-22 https://doi.org/10.1016/S0025-3227(01)00150-5