Fatigue Properties of Fine Grained Magnesium Alloys after Severe Plastic Deformation

  • Chung Chin-Sung (Bowon Light Metal Co.) ;
  • Chun Duk-Kyu (Department of Automotive Engineering, Seoul National University of Technology) ;
  • Kim Ho-Kyung (Department of Automotive Engineering, Seoul National University of Technology)
  • Published : 2005.07.01

Abstract

Fine grained AZ31 and AZ61 magnesium alloys produced by equal channel angular pressing (ECAP) were tested for investigating tensile and fatigue properties, including microstructure, monotonic tensile flow, fatigue life and crack growth rate. For the two alloys, the yield stress of the ECAPed sample was lower than that of the unECAPed (=as received) sample, because of the fact that the softening effect due to texture anisotropy overwhelmed the strengthening effect due to grain refinement. Grain refinement of the AZ31 and AZ61 alloys through ECAP was found not to be significantly effective in increasing fatigue strength.

Keywords

References

  1. Agnew, S. R., Vinogradov, A. Y., Hashimoto, S. and Weertman, J. R., 1999, 'Overview of Fatigue Performance of Cu Processed by Severe Plastic Deformation,' J. Electronic Mater., Vol. 28, No. 9, pp. 1038-1044 https://doi.org/10.1007/s11664-999-0181-0
  2. Berbon P. B., Nikolai, K. T., Valiev, R. Z., Furukawa, M., Horita, Z., Nemoto, M. and Langdon, T. G., 1998, 'Fabrication of Bulk Ultrafine-Grained Materials Through Intense Plastic Straining,' Metal Mat. Trans., Vol. 30A, pp. 1998-2237
  3. Dugdale, D. S., 1960, 'Yielding of Steel Sheets Containing Slits,' J. Mechanics and Physics of Solid, Vol. 8, pp. 100-104 https://doi.org/10.1016/0022-5096(60)90013-2
  4. Friedrich, H. and Schumann, S., 2001, 'Research for a New Age of Magnesium in the Automotive Industry,' J. Mat. Processing Tech., Vol. 117, pp. 276-281 https://doi.org/10.1016/S0924-0136(01)00780-4
  5. Iwahashi, Y., Horita, Z., Nemoto, M. and Langdon, T.G, 1998, 'The Process of Grain Refinement in Equal-Channel Angular Pressing,' Acta Mater., Vol. 46, pp. 3317-3331 https://doi.org/10.1016/S1359-6454(97)00494-1
  6. Kim, H. K., Choi, M. I., Chung, C. S. and Shin, D. H., 2002, 'Fatigue Crack Growth Behavior in Ultrafine Grained Low Carbon Steel,' KSME Int. J., Vol. 16, No. 10, pp. 1246-1252
  7. Kim, W. J., An, C. W., Kim, Y. S. and Hong, S. I., 2002, 'Mechanical Properties and Microstructures of an AZ61 Mg Alloy Produced by Equal Channel Angular Pressing,' Scripta Mater., Vol. 47, pp. 39-44 https://doi.org/10.1016/S1359-6462(02)00094-5
  8. Patlan, V., Vinogradov, A., Higashi, K. and Kitagawa, K., 2001, 'Overview of Fatigue Properties of Fine Grain 5056 Al-Mg Alloy Processed by Equal-Channel Angular Pressing,' Mater. Sci. & Eng., Vol. A300, pp.171-182 https://doi.org/10.1016/S0921-5093(00)01682-8
  9. Rabinovich, M. K. H. and Markushev M. V., 1995, 'Influence of Fine Grained Structure and Superplastic Deformation on the Strength of Aluminum Alloys,' J. Mater. Sci., Vol. 30, pp. 4692-4702 https://doi.org/10.1007/BF01153080
  10. Suresh, S. and Ritchie, R. O., 1984, 'Propagation of Short Fatigue Cracks,' Int. Metal Rev., Vol. 29, pp. 445-476
  11. Vinogradov, A., Nagasaki, S., Parian, V., Kitagawa, K. and Kawazoe, N., 1999, 'Fatigue Properties of Fine Grain 5056 Al-Mg Alloy Processed by Equal-Channel Angular Pressing,' NanoStructured Mater., Vol. 11, pp. 925-934 https://doi.org/10.1016/S0965-9773(99)00392-X
  12. Iwahashi, Y., Furukawa, M., Horita, Z., Nemoto, M. and Langdon, T. G., 1998, 'Microstructural Characteristics of Ultrafine-Grained Aluminum Processed Using Equal-Channel Angular Pressing,' Metal Mat. Trans., Vol. 29A, pp. 2245-2252 https://doi.org/10.1007/s11661-998-0102-5