DOI QR코드

DOI QR Code

Preparation and Characterization of Proton Conductive Phosphosilicate Membranes Based on Inorganic-Organic Hybrid Materials

  • Huang, Sheng-Jian (Department of New Materials Science & Engineering, Dankook University) ;
  • Lee, Hoi-Kwan (Department of New Materials Science & Engineering, Dankook University) ;
  • Kang, Won-Ho (Department of New Materials Science & Engineering, Dankook University)
  • Published : 2005.02.20

Abstract

A series of proton conductive inorganic-organic hybrid membranes doped with phosphoric acid ($H_3PO_4$) and/or triethylphosphate (PO(OEt)$_3$) have been prepared by sol-gel process with 3-glycidoxypropyltrimethoxysilane (GPTMS), 3-aminopropyltriethoxysilane (APTES) and tetraethoxysilane (TEOS) as precursors. High proton conductivity of 3.0 ${\times}$ $10^{-3}$ S/cm with composition of 50TEOS-30GPTMS-20APTES-50$H_3PO_4$ was obtained at 120 ${^{\circ}C}$ under 50% relative humidity. Thermal stability of membrane was significantly enhanced by the presence of SiO$_2$ framework up to 250 ${^{\circ}C}$. XRD revealed that the gels are amorphous. IR spectra showed a good complexation of $H_3PO_4$ in the matrix. The conductivity under 75% relative humidity was significantly improved by addition of APTES due to the increase in concentration of defected site in hybrid matrix. The effect of PO(OEt)$_3$, humidifying time, and heat-treatment were also investigated. PO(OEt)$_3$ had no improvement on conductivity and conductivity increased with humidifying time, however, decreased with heating temperature.

Keywords

References

  1. Brinker, C. J.; Scherrer, G. The Physics and Chemistry of Sol-Gel Processing, Sol-Gel Science; Academic Press: San Diego, 1990
  2. Judeinstein, P.; Sanchez, C. J. Mater. Chem. 1996, 6, 511 https://doi.org/10.1039/jm9960600511
  3. Popall, M.; Andrei, M.; Kappel, J.; Kron, J.; Olma, K.; Olsowski, B. Electrochim. Acta 1998, 43, 155
  4. Savadogo, O. J. New Mater. Electrtochem. Syst. 1998, 1, 47
  5. Samms, S. R.; Wasmus, S.; Savinell, R. F. J. Electrochem. Soc. 1996, 143, 1498 https://doi.org/10.1149/1.1836669
  6. Malhotra, S.; Datta, R. J. Electrochem. Soc. 1997, 144, L23 https://doi.org/10.1149/1.1837420
  7. Alberti, G.; Casciola, M.; Palombari, R. J. Membr. Sci. 2000, 172, 233 https://doi.org/10.1016/S0376-7388(00)00332-X
  8. Staiti, P.; Freni, S.; Hocevar, S. J. Power Sources 1999, 79(2), 250 https://doi.org/10.1016/S0378-7753(99)00177-9
  9. Alberti, G.; Casciola, M. Solid State Ionics 1997, 97, 177 https://doi.org/10.1016/S0167-2738(97)00070-2
  10. Bonnet, B.; Jones, J. et al. J. New Mater. Electrochem. Syst. 2000, 3, 87
  11. Honma, I.; Nomura, S.; Nakajima, H. J. Membr. Sci. 2001, 185, 83 https://doi.org/10.1016/S0376-7388(00)00636-0
  12. Honma, I.; Nakajima, H.; Nishikawa, O.; Sugimoto, T.; Nomura, S. Solid State Ionics 2003, 162-163, 237 https://doi.org/10.1016/S0167-2738(03)00260-1
  13. Oh, B. K.; Sun, Y. K.; Kim, D. W. Bull. Korean Chem. Soc. 2001, 22(10), 1136
  14. Riegel, B.; Blittersdorf, S. et al. J. Non-Cryst. Solides 1998, 226, 76 https://doi.org/10.1016/S0022-3093(97)00487-0
  15. Zhmud, B. V.; Sonnefeld, J. J. Non-Cryst. Solides 1996, 195, 16 https://doi.org/10.1016/0022-3093(95)00497-1
  16. Viart, N.; Rehspringer, J. L. J. Non-Cryst. Solides 1996, 195, 223 https://doi.org/10.1016/0022-3093(95)00540-4
  17. Xia, H. P.; Pu, B. Y. et al. Chinese Science Bulletin 2000, 45(23), 2198 https://doi.org/10.1007/BF02886329
  18. Hook, D. J.; Vagro, T. G.; Gradella, J. A.; Litwiler, K. S.; Bright, F. V. Langmuir 1991, 7, 142 https://doi.org/10.1021/la00049a026
  19. Blaaderen, A. van; Vrij, A. J. Coll. Interf. Sci. 1993, 156, 1 https://doi.org/10.1006/jcis.1993.1073
  20. Zub, Yu. L.; Pechenyi, A. B.; Chuiko, A. A.; Stuchinskaya, T. L.; Kundo, N. N. Catal. Today 1993, 7, 31
  21. Hoebbel, D.; Nacken, M.; Schmidt, H. J. Sol-Gel Sci. Technol. 1998, 12(3), 169 https://doi.org/10.1023/A:1008698201298
  22. Raducha, D.; Wieczorek, W.; Florjanczyk, Z.; Stevens, J.-R. J. Phys. Chem. 1996, 100, 20126 https://doi.org/10.1021/jp9624360
  23. Matsuda, A.; Kanzaki, T. et al. Solid State Ionics 2001, 139, 113 https://doi.org/10.1016/S0167-2738(00)00819-5
  24. Sforca, M. L.; Yoshida, I. V. P.; Nunes, S. P. J. Membr. Sci. 1999, 159, 197 https://doi.org/10.1016/S0376-7388(99)00059-9
  25. Lee, B. I.; Samuels, W. D.; Wang, L.-Q.; Exarhos, G. J. J. Mater. Res. 1996, 11, 134 https://doi.org/10.1557/JMR.1996.0017
  26. Hirata, K.; Matsuda, A.; Hirata, T.; Tatsumisago, M.; Minami, T. J. Sol-Gel Sci. Tech. 2000, 17(1), 61 https://doi.org/10.1023/A:1008713122220
  27. Nagai, M.; Kobayashi, K.; Nakajima, Y. Solid State Ionics 2000, 136-137, 249 https://doi.org/10.1016/S0167-2738(00)00317-9
  28. Kulwicki, M. B. J. Am. Ceram. Soc. 1991, 74, 697 https://doi.org/10.1111/j.1151-2916.1991.tb06911.x
  29. Garcia-Belmonte, G.; Kytin, V.; Bisquert, J. J. Appl. Phys. 2003, 54(8), 5261
  30. Bockris, M.; Reddy, A. K. N. Modern Electrochemistry; Plenum Press: N.Y., 1990; pp 461-448
  31. Lechner, R. E. Ferroelectrics 1995, 167, 83 https://doi.org/10.1080/00150199508007723
  32. Etienne, M.; Walcarius, A. Talanta 2003, 59, 1173 https://doi.org/10.1016/S0039-9140(03)00024-9
  33. Golub, A. A.; Zubenko, A. I.; Zhmud, B. V. J. Colloid. Interf. Sci. 1996, 179, 482 https://doi.org/10.1006/jcis.1996.0241
  34. Zhmud, B. V.; Pechenyi, A. B. J. Coloid. Interf. Sci. 1995, 173, 71 https://doi.org/10.1006/jcis.1995.1298
  35. Schechter, A.; Savinell, R. F. Solid State Ionics 2002, 147, 181 https://doi.org/10.1016/S0167-2738(02)00040-1
  36. Wang, C.; Nogami, M. Materials Letters 2000, 42, 225 https://doi.org/10.1016/S0167-577X(99)00188-3
  37. Matsuda, A.; Kanzaki, T.; Tatsumisago, M.; Minami, T. Solid State Ionics 2001, 145, 161 https://doi.org/10.1016/S0167-2738(01)00945-6

Cited by

  1. Synthesis and characterization of proton conducting inorganic-organic hybrid nanocomposite films from mixed phosphotungstic acid/phosphomolybdic acid/tetramethoxysilane/3-glycidoxypropyltrimethoxysilane/phosphoric acid for H2/O2 fuel cells vol.1, pp.6, 2009, https://doi.org/10.1063/1.3278517
  2. Structural study on inorganic/organic hybrid composite membranes vol.21, pp.2, 2011, https://doi.org/10.1039/C0JM02504F
  3. fuel cells vol.42, pp.21, 2009, https://doi.org/10.1088/0022-3727/42/21/215501
  4. thin films vol.39, pp.12, 2018, https://doi.org/10.1088/1674-4926/39/12/122003
  5. Humidity Sensing Properties of Nanoporous TiO2-SnO2 Ceramic Sensors vol.26, pp.11, 2005, https://doi.org/10.5012/bkcs.2005.26.11.1881
  6. Synthesis and characterization of proton conducting inorganic–organic hybrid nanocomposite membranes based on tetraethoxysilane/trimethylphosphate/3-glycidoxypropyltrimethoxysilane/heteropoly ac vol.54, pp.20, 2005, https://doi.org/10.1016/j.electacta.2009.04.007
  7. Synthesis and Characterization of Proton Conducting Inorganic−Organic Hybrid Nanocomposite Membranes Based on mixed PWA-PMA-TEOS-GPTMS-H3PO4-APTES for H2/O vol.113, pp.32, 2009, https://doi.org/10.1021/jp902518c
  8. Preparation and characterization of proton conducting phosphosilicate glass membranes with different catalyst layers for low-temperature H2/O2 fuel cells vol.506, pp.2, 2005, https://doi.org/10.1016/j.jallcom.2010.07.113
  9. Portable smart highly proton conductive all inorganic gel paste electrolyte with optimum phosphorous to silicon ratio for enhanced durable operation of a fuel cell vol.2, pp.8, 2018, https://doi.org/10.1039/c8se00142a