DOI QR코드

DOI QR Code

Computational Study of Proline - Water Cluster

  • Lee, Kyung-Min (College of Environmental Science and Applied Chemistry (BK21), Kyunghee University) ;
  • Park, Sung-Woo (College of Environmental Science and Applied Chemistry (BK21), Kyunghee University) ;
  • Jeon, In-Sun (College of Environmental Science and Applied Chemistry (BK21), Kyunghee University) ;
  • Lee, Bo-Ra (College of Environmental Science and Applied Chemistry (BK21), Kyunghee University) ;
  • Ahn, Doo-Sik (College of Environmental Science and Applied Chemistry (BK21), Kyunghee University) ;
  • Lee, Sung-Yul (College of Environmental Science and Applied Chemistry (BK21), Kyunghee University)
  • Published : 2005.06.20

Abstract

Calculations are presented for the structures of various conformers of the bare proline and proline –($H_2O$) cluster. The effects of hydrogen bonding with a water molecule on the relative stability of the low energy conformers of proline are examined. Microsolvation by a water molecule is predicted to affect the relative stability, structures and the infrared frequencies of the conformers to a large degree.

Keywords

References

  1. Cramer, C. J.; Truhlar, D. G. Chem. Rev. 1999, 99, 2161, and references therein https://doi.org/10.1021/cr960149m
  2. Zwier, T. S. J. Phys. Chem. A 2001, 105, 8827 https://doi.org/10.1021/jp011659+
  3. Shishkin, O. V.; Sukhanov, O. S.; Gorb, L.; Leszczynski, J. Phys. Chem. Chem. Phys. 2002, 4, 5359 https://doi.org/10.1039/b205351a
  4. Robertson, E. G.; Simons, J. P. Phys. Chem. Chem. Phys. 2001, 3, 1 https://doi.org/10.1039/b008225m
  5. Scheiner, S.; Kar, T.; Pattanayak, J. J. Am. Chem. Soc. 2002, 124, 13257 https://doi.org/10.1021/ja027200q
  6. Schutz, M.; Burgi, T.; Leutwyler, S.; Fischer, T. J. Chem. Phys. 1993, 98, 3763 https://doi.org/10.1063/1.464055
  7. Ahn, D.-S.; Park, S.-W.; Jeon, I.-S.; Lee, M.-K.; Kim, N.-H.; Han, Y.-H.; Lee , S. J. Phys. Chem. B 2003, 107, 14109 https://doi.org/10.1021/jp031041v
  8. Bandyopadhyay, P.; Gordon, M. S.; Mennucci, B.; Tomasi, J. J. Chem. Phys. 2002, 116, 5023 https://doi.org/10.1063/1.1433503
  9. Tortonda, F. R.; Pascual-Ahuir, J. L.; Silla, E.; Tunon, I. J. Chem. Phys. 1998, 109, 592 https://doi.org/10.1063/1.476596
  10. Lee, K. T.; Sung, J.; Lee, K. J.; Kim, S. K., Park, Y. D. Chem. Phys. Lett. 2003, 368, 262 https://doi.org/10.1016/S0009-2614(02)01850-X
  11. Xu, S.; Niles, J. M.; Bowen, K. H. J. Chem. Phys. 2003, 119, 10696 https://doi.org/10.1063/1.1620501
  12. Snoek, L. C.; Kroemer, R. T.; Hockridge, M. R.; Simons, J. P. Phys. Chem. Chem. Phys. 2001, 3, 1819 https://doi.org/10.1039/b101296g
  13. Spinor, J.; Sulkes, M. J. Chem. Phys. 1993, 98, 9389 https://doi.org/10.1063/1.465084
  14. Park, S.-W.; Ahn, D.-S.; Lee, S. Chem. Phys. Lett. 2003, 371, 74 https://doi.org/10.1016/S0009-2614(03)00221-5
  15. Bonaccorsi, R.; Palla, P.; Tomasi, J. J. Am. Chem. Soc. 1984, 106, 1945 https://doi.org/10.1021/ja00319a008
  16. Kassab, E.; Langlet, J.; Evieth, E.; Akacem, Y. J. Mol. Struct. Theochem. 2000, 531, 267 https://doi.org/10.1016/S0166-1280(00)00451-6
  17. Jensen, J. H.; Gordon, M. S. J. Am. Chem. Soc. 1995, 117, 8159 https://doi.org/10.1021/ja00136a013
  18. Ahn, D.-S.; Lee, S. Bull. Korean Chem. Soc. 2003, 24, 545 https://doi.org/10.5012/bkcs.2003.24.5.545
  19. Ahn, D.-S.; Lee, S.; Cheong, W. J. Bull. Korean Chem. Soc. 2004, 25, 1161 https://doi.org/10.5012/bkcs.2004.25.8.1161
  20. Kang, Y. K. J. Phys. Chem. B 2004, 108, 5463 https://doi.org/10.1021/jp049658f
  21. Momany, F. A.; McGuire, R. F.; Burgess, A. W.; Scheraga, H. A. J. Phys. Chem. 1975, 79, 2361 https://doi.org/10.1021/j100589a006
  22. Kapota, C.; Lemaire, J.; Maitre, P.; Ohanessian, G. J. Am. Chem. Soc. 2004, 126, 1836 https://doi.org/10.1021/ja036932v
  23. Lemoff, A. S.; Bush, M. F.; Williams, E. R. J. Phys. Chem. A 2005, 109, 1903 https://doi.org/10.1021/jp0466800
  24. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Pittsburgh, PA, 2003
  25. Czinki, E.; Csaszar, A. G. Chem. Eur. J. 2003, 9, 1008 https://doi.org/10.1002/chem.200390103

Cited by

  1. A Proline-Based Neuraminidase Inhibitor: DFT Studies on the Zwitterion Conformation, Stability and Formation vol.10, pp.9, 2009, https://doi.org/10.3390/ijms10093918
  2. Microsolvation of Lysine by Water: Computational Study of Stabilized Zwitterion vol.115, pp.33, 2011, https://doi.org/10.1021/jp202850s
  3. Water Adsorption at Two Unsolvated Peptides with a Protonated Lysine Residue: From Self-Solvation to Solvation vol.116, pp.51, 2012, https://doi.org/10.1021/jp3098268
  4. Computational investigation on microsolvation of the osmolyte glycine betaine [GB (H2O)1-7] vol.18, pp.12, 2012, https://doi.org/10.1007/s00894-012-1501-5
  5. A theoretical investigation on the proton transfer tautomerization mechanisms of 2-thioxanthine within microsolvent and long range solvent vol.19, pp.8, 2013, https://doi.org/10.1007/s00894-013-1858-0
  6. Thermodynamic and Conformational Study of Proline Stereoisomers vol.118, pp.34, 2014, https://doi.org/10.1021/jp5063594
  7. Gas-Phase Solvation of Protonated Amino Acids by Methanol vol.118, pp.49, 2014, https://doi.org/10.1021/jp5086729
  8. group of zwitterionic alanine vol.46, pp.12, 2015, https://doi.org/10.1002/jrs.4830
  9. -proline: electrostatic potential and vibrational analysis vol.5, pp.100, 2015, https://doi.org/10.1039/C5RA06088E
  10. Elucidating the intermolecular hydrogen bonding interaction of proline with amides—quantum chemical calculations pp.1572-9001, 2018, https://doi.org/10.1007/s11224-018-1235-9
  11. Intermediate Complexes in SN2 Reaction: [Na+, F-, H2O, CH3Cl] System vol.26, pp.12, 2005, https://doi.org/10.5012/bkcs.2005.26.12.2081
  12. The Structures and Proton Transfer Barriers in Proton-bound Homodimers of Aromatic Molecular Bases: Implication of Zero-point Energies for the Proton-transfer Reaction vol.27, pp.11, 2005, https://doi.org/10.5012/bkcs.2006.27.11.1903
  13. Density Functional Theory Study of Acetonitrile -Water Clusters: Structures and Infrared Frequency Shifts vol.28, pp.5, 2007, https://doi.org/10.5012/bkcs.2007.28.5.725
  14. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  15. Structure and Stability of γ-Aminobutyric acid-(H2O)n (n = 0-5) Clusters: Zwitterionic vs. Canonical forms vol.31, pp.1, 2005, https://doi.org/10.5012/bkcs.2010.31.01.059
  16. IR spectroscopy of cationized aliphatic amino acids: Stability of charge-solvated structure increases with metal cation size vol.297, pp.1, 2010, https://doi.org/10.1016/j.ijms.2010.04.010
  17. Effects of Microsolvation on the Stability of Zwitterionic Valine vol.33, pp.11, 2012, https://doi.org/10.5012/bkcs.2012.33.11.3797
  18. The mechanisms of α-H and proton transfers of glycine induced by Mg2+ vol.14, pp.2, 2015, https://doi.org/10.1142/s021963361550008x
  19. Hydration Effect on Positron Binding Ability of Proline: Positron Attachment Induces Proton-Transfer To Form Zwitterionic Structure vol.123, pp.6, 2019, https://doi.org/10.1021/acs.jpca.8b11653