DOI QR코드

DOI QR Code

Indirect Electrochemical Oxidation of Phenol by Ce4+, Controlling Surface Insulation of Au Electrode

  • Pyo, Myoung-Ho (Department of Chemistry, Sunchon National University) ;
  • Moon, Il-Shik (Department of Chemical Engineering, Sunchon National University)
  • Published : 2005.06.20

Abstract

Indirect electrochemical oxidation of phenol by $Ce^{4+}$ was investigated in sulfuric acid solutions. It was found that electrode fouling during oxidation of phenol can be controlled by adjusting the time interval (TI) of double potential steps (DPSs). While the electroactivity was greatly decreased after several DPSs of a relatively long TI, repeated DPSs with a short potential pulse showed substantial amounts of electroactivity after a few hundreds or thousands DPS, suggesting that the formation of an insulating layer can be controlled by adjusting a potential program. Effectiveness of the consecutive application of DPSs for phenol decomposition was confirmed by GC-MS.

Keywords

References

  1. Korbahti, B. K.; Tanyolac, A. Water Res. 2003, 37, 1505 https://doi.org/10.1016/S0043-1354(02)00523-7
  2. Chen, G. Sep. Purif. Technol. 2004, 38, 11 https://doi.org/10.1016/j.seppur.2003.10.006
  3. Yim, B. Bull. Korean Chem. Soc. 2004, 48, 561 https://doi.org/10.5012/jkcs.2004.48.6.561
  4. Kubo, M.; Matsulka, K.; Takahashi, A.; Shibasaki-Kitakawa, N.; Yonemoto, T. Ultrason. Sonochem. 2005, 12, 263 https://doi.org/10.1016/j.ultsonch.2004.01.039
  5. Wu, C.; Liu, X.; Wei, D.; Fan, J.; Wang, L. Water Res. 2001, 35, 3927 https://doi.org/10.1016/S0043-1354(01)00133-6
  6. Jung, O.-J. Bull. Korean Chem. Soc. 2001, 22, 850
  7. Kargi, F.; Pamukoglu, M. Y. Enzyme Microb. Tech. 2003, 33, 588 https://doi.org/10.1016/S0141-0229(03)00187-X
  8. Lai, Y.-C.; Lin, S.-C. Process Biochem. 2005, 40, 1167 https://doi.org/10.1016/j.procbio.2004.04.009
  9. Chiang, L.-C.; Chang, J.-E.; Wen, T.-C. Water Res. 1995, 29, 671 https://doi.org/10.1016/0043-1354(94)00146-X
  10. Farmer, J. C.; Wang, F. T.; Hawley-Fedder, R. A.; Lewis, P. R.; Summers, L. J.; Foiles, L. J. Electrochem. Soc. 1992, 139, 654 https://doi.org/10.1149/1.2069280
  11. Bringmann, F.; Ebert, K.; Galla, U.; Schmieder, H. J. Appl. Electrochem. 1995, 25, 846 https://doi.org/10.1007/BF00772203
  12. Dhooge, P. M.; Stilwell, D. E.; Park, S.-M. J. Electrochem. Soc. 1982, 129, 1719 https://doi.org/10.1149/1.2124257
  13. Chung, Y. H.; Park, S.-M. J. Appl. Electrochem. 2000, 30, 685 https://doi.org/10.1023/A:1004020100679
  14. Varela, J. A.; Oberg, S. G.; Neustedter, T. M.; Nelson, N. Environ. Prog. 2001, 20, 261 https://doi.org/10.1002/ep.670200415
  15. Pham, M.; Lacaze, P.; Dubois, J. J. Electroanal. Chem. 1978, 86, 147 https://doi.org/10.1016/S0022-0728(78)80362-3
  16. Aranzazu Heras, M.; Lupu, S.; Pigani, L.; Pirvu, C.; Seeber, R.; Terzi, F.; Zanardi, C. Electrochim. Acta 2005, 50, 1685 https://doi.org/10.1016/j.electacta.2004.10.029
  17. Wang, J.; Jiang, M.; Lu, F. J. Electroanal. Chem. 1998, 444, 127 https://doi.org/10.1016/S0022-0728(97)00583-4
  18. Gattrell, M.; Kirk, D. W. Can. J. Chem. Eng. 1990, 68, 997 https://doi.org/10.1002/cjce.5450680615
  19. Gattrell, M.; Kirk, D. W. J. Electrochem. Soc. 1993, 140, 903 https://doi.org/10.1149/1.2056225

Cited by

  1. Cobalt(III)-mediated oxidative destruction of phenol using divided electrochemical cell vol.25, pp.5, 2008, https://doi.org/10.1007/s11814-008-0168-1
  2. Electro-oxidation Kinetics of Cerium(III) in Nitric Acid Using Divided Electrochemical Cell for Application in the Mediated Electrochemical Oxidation of Phenol vol.28, pp.8, 2007, https://doi.org/10.5012/bkcs.2007.28.8.1329
  3. Removal of Heavy Metal Ions by Electrocoagulation for Continuous Use of Fe2+/Fe3+-Mediated Electrochemical Oxidation Solutions vol.29, pp.5, 2008, https://doi.org/10.5012/bkcs.2008.29.5.974
  4. Arsenic Removal from Contaminated Water Using Natural Adsorbents: A Review vol.11, pp.11, 2005, https://doi.org/10.3390/coatings11111407