DOI QR코드

DOI QR Code

Pd-Catalyzed Substitution Reactions with Organoindium Reagents in situ Generated from Indium and Allyl or Propargyl Halides

  • Lee, Phil-Ho (Department of Chemistry, Kangwon National University) ;
  • Shim, Eun-Kyong (Department of Chemistry, Kangwon National University) ;
  • Lee, Koo-Yeon (Department of Chemistry, Kangwon National University) ;
  • SeoMoon, Dong (Department of Chemistry, Kangwon National University) ;
  • Kim, Sun-Dae (Department of Chemistry, Kangwon National University)
  • Published : 2005.01.20

Abstract

Allylindium and propargylindium reagents in situ generated from the reactions of indium with allyl halides and propargyl halides could participate as nucleophiles in Pd-catalyzed substitution reactions of allyl carbonates to produce 1,5-dienes and 1,5-enynes in good yields. $\beta$-Hydride elimination products were produced in case of carbonates having $\beta$-hydrogens. Because organoindium reagents obtained from allyl or propargyl halides and indium have previously not been used to Pd-catalyzed allylic and propargylic substitution reactions, these results should provide more opportunities for the development of new C-C bond forming reactions.

Keywords

References

  1. Tsuji, J. Palladium Reagents and Catalysts; John Wiley & Sons: Chichester, 1995; pp 290-422
  2. Godleski, S. A. In Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 4, p 585
  3. Tsuji, J. Tetrahedron 1986, 42, 4361 https://doi.org/10.1016/S0040-4020(01)87277-X
  4. Trost, B. M. Tetrahedron 1977, 33, 2615 https://doi.org/10.1016/0040-4020(77)80284-6
  5. Heumann, A. In Transition Metals for Organic Synthesis; Beller, M., Bolm, C., Eds.; Wiley-VHC: Weinheim, 1998; Vol. 1, p 251
  6. Trost, B. M. Acc. Chem. Res. 1980, 13, 385 https://doi.org/10.1021/ar50155a001
  7. Wade, P. A.; Morrow, S. D.; Hardinger, S. A. J. Org. Chem. 1982, 47, 365 https://doi.org/10.1021/jo00341a040
  8. Tsuji, J. Pure Appl. Chem. 1986, 58, 869 https://doi.org/10.1351/pac198658060869
  9. Tsuji, J.; Minami, L. Acc. Chem. Res. 1987, 20, 140 https://doi.org/10.1021/ar00136a003
  10. Castanet, Y.; Petit, T. Tetrahedron Lett. 1979, 20, 3221 https://doi.org/10.1016/S0040-4039(01)95367-5
  11. Temple, J. S.; Schwartz, J. J. Am. Chem. Soc. 1980, 102, 7381 https://doi.org/10.1021/ja00544a046
  12. Hayashi, T.; Konishi, M.; Yokota, K.; Kumada, M. Chem. Commun. 1981, 313
  13. Matsushita, H.; Negishi, E. J. Am. Chem. Soc. 1981, 103, 2882 https://doi.org/10.1021/ja00400a074
  14. Godleski, S. A.; Gundlach, K. B.; Ho, H. Y.; Keinan, E.; Frolow, F. Organometallics 1984, 3, 21 https://doi.org/10.1021/om00079a006
  15. Hayashi, T.; Konishi, M.; Kumada, M. Chem. Commun. 1984, 107
  16. Trost, B. M.; Keinan, E. Tetrahedron Lett. 1980, 21, 2595 https://doi.org/10.1016/S0040-4039(00)92814-4
  17. Godschalx, J.; Stille, J. K. Tetrahedron Lett. 1980, 21, 2599 https://doi.org/10.1016/S0040-4039(00)92815-6
  18. Goliaszewski, A.; Schwartz, J. J. Am. Chem. Soc. 1984, 106, 5028 https://doi.org/10.1021/ja00329a079
  19. Goliaszewski, A.; Schwartz, J. Tetrahedron 1985, 41, 5779 https://doi.org/10.1016/S0040-4020(01)91417-6
  20. Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395 https://doi.org/10.1021/cr9409804
  21. Trost, B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921 https://doi.org/10.1021/cr020027w
  22. Farina, V.; Krishnamurthy, V.; Scott, W. J. The Stille Reaction; Wiley: New York, 1998
  23. Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508 https://doi.org/10.1002/anie.198605081
  24. Stille, J. K. Pure Appl. Chem. 1985, 57, 1771 https://doi.org/10.1351/pac198557121771
  25. Mitchell, T. N. Synthesis 1992, 803
  26. Farina, V.; Krishnamurthy, V.; Scott, W. J. Org. React. 1997, 50, 1
  27. Pereyre, M.; Quintard, J.; Rahm, A. Tin in Organic Synthesis; Butterworths: London, 1987
  28. Geissler, H. In Transition Metals for Organic Synthesis; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weomheim, 1998; Chapter 2.10
  29. Lee, P. H.; Lee, K.; Sung, S.-Y.; Chang, S. J. Org. Chem. 2001, 66, 8646 https://doi.org/10.1021/jo0105641
  30. Lee, P. H.; Lee, K.; Kim, S. Org. Lett. 2001, 3, 3205 https://doi.org/10.1021/ol016542i
  31. Iwasawa, N.; Miura, T.; Kiyota, K.; Kusama, H.; Lee, K.; Lee, P. H. Org. Lett. 2002, 4463
  32. Lee, P. H.; Seomoon, D.; Lee, K.; Heo, Y. J. Org. Chem. 2003, 68, 2510 https://doi.org/10.1021/jo026600t
  33. Miura, T.; Kiyota, K.; Kusama, H.; Lee, K.; Kim, H.; Kim, S.; Lee, P. H.; Iwasawa, N. Org. Lett. 2003, 5, 1725 https://doi.org/10.1021/ol034365a
  34. Lee, K.; Kim, H.; Miura, T.; Kiyota, K.; Kusama, H.; Kim, S.; Iwasawa, N.; Lee, P. H. J. Am. Chem. Soc. 2003, 125, 9682 https://doi.org/10.1021/ja035988m
  35. Damle, S. V.; Seomoon, D.; Lee, P. H. J. Org. Chem. 2003, 68, 7085 https://doi.org/10.1021/jo034727s
  36. Lee, P. H.; Kim, S.; Lee, K.; Seomoon, D.; Kim, H.; Lee, S.; Kim, M.; Han, M.; Noh, K.; Livinghouse, T. Org. Lett. 2004, 6, 4825 https://doi.org/10.1021/ol048175r
  37. Lee, P. H.; Kim, H.; Lee, K.; Seomoon, D.; Kim, S.; Kim, H.; Kim, H.; Lee, M.; Shim, E.; Lee, S.; Kim, M.; Han, M.; Noh, K.; Sridhar, M. Bull. Korean Chem. Soc. 2004, 25, 1687 https://doi.org/10.5012/bkcs.2004.25.11.1687
  38. Lee, P. H.; Sung, S.-Y.; Lee, K. Org. Lett. 2001, 3, 3201 https://doi.org/10.1021/ol016532h
  39. Lee, P. H.; Sung, S.-Y.; Lee, K.; Chang, S. Synlett 2002, 146
  40. Lee, K.; Seomoon, D.; Lee, P. H. Angew. Chem., Int. Ed. 2002, 41, 3901 https://doi.org/10.1002/1521-3773(20021018)41:20<3901::AID-ANIE3901>3.0.CO;2-S
  41. Lee, K.; Lee, J.; Lee, P. H. J. Org. Chem. 2002, 67, 8265 https://doi.org/10.1021/jo026121u
  42. Lee, P. H.; Lee, S. W.; Lee, K. Org. Lett. 2003, 5, 1103 https://doi.org/10.1021/ol034167j
  43. Lee, P. H.; Lee, S. W.; Seomoon, D. Org. Lett. 2003, 5, 4963 https://doi.org/10.1021/ol035883o
  44. Lee, S. W.; Lee, K.; Seomoon, D.; Kim, S.; Kim, H.; Kim, H.; Shim, E.; Lee, M.; Lee, S.; Kim, M.; Lee, P. H. J. Org. Chem. 2004, 69, 4852 https://doi.org/10.1021/jo0495790
  45. Lee, P. H.; Seomoon, D.; Lee, K.; Kim, S.; Kim, H.; Kim, H.; Shim, E.; Lee, M.; Lee, S.; Kim, M.; Sridhar, M. Adv. Synth. Catal. 2004, 346, 1641 https://doi.org/10.1002/adsc.200404125
  46. Lee, P. H.; Seomoon, D.; Lee, K. Org. Lett. 2005, 7, 343 https://doi.org/10.1021/ol047567v

Cited by

  1. An Effective Diels-Alder Reaction of Vinyl Allenols with Dienophiles vol.2011, pp.7, 2011, https://doi.org/10.1002/ejoc.201001148
  2. Catalytic intermolecular allyl–allyl cross-couplings between alcohols and boronates vol.47, pp.33, 2011, https://doi.org/10.1039/c1cc13348a
  3. Nickel-Catalyzed Allylic Substitution of Simple Alkenes vol.6, pp.7, 2011, https://doi.org/10.1002/asia.201000875
  4. Palladium-Catalyzed Allyl Cross-Coupling Reactions with In Situ Generated Organoindium Reagents vol.6, pp.8, 2011, https://doi.org/10.1002/asia.201000890
  5. Organoindium Reagents: The Preparation and Application in Organic Synthesis vol.113, pp.1, 2013, https://doi.org/10.1021/cr300051y
  6. Sequential Pd(0)-, Rh(I)-, and Ru(II)-Catalyzed Reactions in a Nine-Step Synthesis of Clinprost vol.15, pp.3, 2013, https://doi.org/10.1021/ol303402e
  7. Regioselective allylgallation of terminal alkynes pp.14, 2005, https://doi.org/10.1039/b417975g
  8. Pd-Catalyzed Substitution Reactions with Organoindium Reagents in situ Generated from Indium and Allyl or Propargyl Halides. vol.36, pp.24, 2005, https://doi.org/10.1002/chin.200524056
  9. Fluoride-triggered indium-mediated synthesis of (hetero)biaryls pp.14, 2009, https://doi.org/10.1039/b901722d
  10. Metal-Mediated Diastereoselective Allylation Reaction of Chiral α,β-Epoxy Aldehyde. Part 1 vol.27, pp.10, 2006, https://doi.org/10.5012/bkcs.2006.27.10.1519
  11. Indium and Gallium-Mediated Addition Reactions vol.28, pp.1, 2007, https://doi.org/10.5012/bkcs.2007.28.1.017
  12. Palladium(0) versus Nickel(0) Catalysis in Selective Functional-Group-Tolerant sp3–sp3 Carbon–Carbon Bond Formations vol.15, pp.45, 2005, https://doi.org/10.1002/chem.200902221
  13. Palladium-Catalyzed Cross-Coupling Reaction and Gold-Catalyzed Cyclization for Preparation of Ethyl 2-Aryl 2,3-Alkadienoates and α-Aryl γ-Butenolides vol.32, pp.8, 2005, https://doi.org/10.5012/bkcs.2011.32.8.2911
  14. Palladium‐Catalyzed Regiodivergent Substitution of Propargylic Carbonates vol.22, pp.50, 2005, https://doi.org/10.1002/chem.201603481