DOI QR코드

DOI QR Code

Determination of Catechin Compounds in Korean Green Tea Infusions under Various Extraction Conditions by High Performance Liquid Chromatography

  • Cheong, Won-Jo (Department of Chemistry and Institute of Basic Research, Inha University) ;
  • Park, Moon-Hee (Department of Chemistry and Institute of Basic Research, Inha University) ;
  • Kang, Gyoung-Won (Department of Chemistry and Institute of Basic Research, Inha University) ;
  • Ko, Joung-Ho (Department of Chemistry and Institute of Basic Research, Inha University) ;
  • Seo, You-Jin (Department of Chemistry and Institute of Basic Research, Inha University)
  • Published : 2005.05.20

Abstract

Liquid chromatographic methods with UV and fluorescence detection have been used to determine the levels of (+)-catechin, (-)-epicatechin, (-)-epicatechin gallate, and (-)-epigallocatechin gallate in Korean green tea infusions. The extracts of Korean green tea leaves or powders in water at various temperatures (100 ${^{\circ}C}$, 80 ${^{\circ}C}$, 60 ${^{\circ}C}$) and time, were washed with chloroform and re-extracted to ethyl acetate. The ethyl acetate phase was dried and re-dissolved in methanol and analyzed. Five catechin compounds were separated by gradient elution. The flavonoids were found decomposed on prolonged extraction, thus exhaustive extraction by a Soxhlet apparatus was found useless for green tea. Some unknown components were found in the extracts at 100 ${^{\circ}C}$. When the green tea was filtered and re-extracted with new fresh water, still some flavonoids were extracted. However, the contents of flavonoids in the third extract were found negligible. The flavonoid extraction rate of green tea powders was higher than that of green tea leaves, but flavonoid decomposition of green tea powders was also faster than that of green tea leaves. The traditional way of drinking green tea was found appropriate in view of flavonoids intake.

Keywords

References

  1. Smith, H. Flavonoids in Phytochrome; Mitrakos, K, Shropshire, W., Eds.; Academic Press: New York and London, 1972; p 433
  2. Robards, K.; Antolovich, M. Analyst 1997, 122, 11R https://doi.org/10.1039/a606499j
  3. Markham, K. R. Techniques of Flavonoid Identification; Academic Press: New York and London, 1981
  4. Singleton, V. L.; Esau, P. Phenolic Substances in Grapes and Wine and Their Significance; Acaedmic Press: New York, 1969
  5. Afanas'ev, I. B.; Dorozhko, A. I.; Brodskii, A. V.; Kostyuk, A.; Potapovitch, A. J. Biochem. Pharmacol. 1989, 38, 1763 https://doi.org/10.1016/0006-2952(89)90410-3
  6. Mora, A.; Paya, M.; Rios, J. L.; Alcaraz, M. J. Biochem. Pharmacol. 1990, 40, 793 https://doi.org/10.1016/0006-2952(90)90317-E
  7. Rice-Evans, C. A.; Miller, N. J.; Pnganga, G. Free Radical Biology and Medicine 1993, 20, 933
  8. Siemann, E. H.; Creasy, L. L. Amer. J. Enol. Vitic. 1992, 43, 49
  9. Jang, M.; Cai, L.; Udeani, G. O.; Slowing, K. V.; Thomas, C. F.; Beecher, C. W. W.; Fong, H. H. S.; Farnsworth, M. R.; Kinghorn, A. D.; Mehta, R. G.; Moon, R. C.; Pezzuto, J. M. Science 1997, 275, 218 https://doi.org/10.1126/science.275.5297.218
  10. Middleton, E. Int. J. Pharmacog. 1996, 34, 344 https://doi.org/10.1076/phbi.34.5.344.13245
  11. Steinmetz, K. A.; Porter, J. D. Cancer Causes Control 1991, 2, 427 https://doi.org/10.1007/BF00054304
  12. Law, M. R.; Morris, J. K. Eur. J. Clin. Nutr. 1998, 52, 549 https://doi.org/10.1038/sj.ejcn.1600603
  13. Tijburg, L. B. M.; Mattern, T.; Folts, J. D.; Weisgerber, U. M.; Katan, M. B. Crit. Rev. Food Sci. Nutr. 1997, 37, 771 https://doi.org/10.1080/10408399709527802
  14. Rimm, E. B.; Katan, M. B.; Ascherio, A.; Stanpfer, M. J.; Willett, W. C. Ann. Intern. Med. 1996, 125, 384 https://doi.org/10.7326/0003-4819-125-5-199609010-00005
  15. Ferry, D. R.; Smith, A.; Malkhandi, J.; Fyfe, D. W.; De Takat, P. G.; Anderson, D.; Baker, J.; Kerr, D. J. Clin. Cancer Res. 1996, 2, 659
  16. Lotito, S. B.; Fraga, C. G. Free Radical Biology and Medicine 1998, 24, 435 https://doi.org/10.1016/S0891-5849(97)00276-1
  17. Morgan, J. F.; Klucas, R. V.; Grayer, R. J.; Abian, J.; Becana, M. Free Radical Biology and Medicine 1997, 22, 861 https://doi.org/10.1016/S0891-5849(96)00426-1
  18. Ranabahu, P.; Harborne, J. B. Biochemical Systematics and Ecology 1993, 21, 715 https://doi.org/10.1016/0305-1978(93)90077-5
  19. Choi, B. H. Korean J. Plant Taxonomy 1994, 24, 1
  20. Viguera, G. C.; Barberan, T. F.; Ferreres, F.; Artes, F.; Lorentes, T. F. Z. Lebensm. Unters. Forsch. 1993, 197, 255 https://doi.org/10.1007/BF01185281
  21. Mouly, P. P.; Gaydou, E. M.; Estienne, J. M. J. Chromatogr. 1993, 634, 1529
  22. Bronner, W. E.; Beecher, G. R. J. Chromatogr. A 1995, 705, 247 https://doi.org/10.1016/0021-9673(95)00304-6
  23. Mouly, P. P.; Gaydou, E. M.; Faure, R.; Estinne, J. M. J. Agric. Food Chem. 1997, 45, 373 https://doi.org/10.1021/jf9605097
  24. Rodriguez, M. A.; Mnalovana, S.; Perez, J. P.; Borges, T.; Gracia- Montelongo, F. J. J. Chromatogr. A 2001, 912, 249 https://doi.org/10.1016/S0021-9673(01)00598-2
  25. Peinado, J.; Florindo, J. Analyst 1988, 113, 555 https://doi.org/10.1039/an9881300555
  26. Kartnig, T.; Gobel, I. J. Chromatogr. A 1996, 740, 99 https://doi.org/10.1016/0021-9673(96)00102-1
  27. Schmidt, T. J.; Merfort, I. J. Chromatogr. 1993, 634, 350 https://doi.org/10.1016/0021-9673(93)83025-N
  28. Schmidt, T. J.; Merfort, I.; Willuhn, G. J. Chromatogr. A 1994, 669, 236 https://doi.org/10.1016/0021-9673(94)80353-6
  29. Galletti, G. C.; Reeves, J. B. Organic Mass Spectometry 1992, 27, 226 https://doi.org/10.1002/oms.1210270313
  30. Stecher, G.; Huck, C. W.; Popp, M.; Bonn, G. K. Fresenius J. Anal. Chem. 2001, 371, 73 https://doi.org/10.1007/s002160100898
  31. Tolonen, A.; Uusitalo, J. Rapid Comm. Mass Spectrom. 2004, 18, 3113 https://doi.org/10.1002/rcm.1736
  32. He, X. G. J. Chromatogr. A 2000, 880, 203 https://doi.org/10.1016/S0021-9673(00)00059-5
  33. Lee, M.-J.; Prabhu, S.; Meng, X.; Li, C.; Yang, C. S. Anal. Biochem. 2000, 279, 164 https://doi.org/10.1006/abio.2000.4487
  34. Wright, L. P.; Aucamp, J. P.; Apostolides, Z. J. Chromatogr. A 2001, 919, 205 https://doi.org/10.1016/S0021-9673(01)00762-2
  35. Lee, B.-L.; Ong, C.-N. J. Chromatogr. A 2000, 881, 439 https://doi.org/10.1016/S0021-9673(00)00215-6
  36. Sano, M.; Tabata, M.; Suzuki, M.; Degawa, M.; Miyase, T.; Maeda-Yamamoto, M. Analyst 2001, 126, 816 https://doi.org/10.1039/b102541b
  37. Tsao, R.; Deng, Z. Y. J. Chromatogr. B 2004, 812, 85 https://doi.org/10.1016/j.jchromb.2004.09.028
  38. Zuo, Y. G.; Chen, H.; Deng, Y. W. Talanta 2002, 57, 307 https://doi.org/10.1016/S0039-9140(02)00030-9
  39. Fernandez, P. L.; Pablos, F.; Martin, M.; Gonzalez, A. G. J. Agric. Food Chem. 2002, 50, 1833 https://doi.org/10.1021/jf0114435

Cited by

  1. Assay Models and Influence of Extraction Time vol.14, pp.10, 2011, https://doi.org/10.1089/jmf.2010.0291
  2. Development and certification of green tea-containing standard reference materials vol.402, pp.1, 2012, https://doi.org/10.1007/s00216-011-5472-7
  3. The Joint Use of Electronic Nose and Electronic Tongue for the Evaluation of the Sensorial Properties of Green and Black Tea Infusions as Related to Their Chemical Composition vol.04, pp.06, 2013, https://doi.org/10.4236/fns.2013.46078
  4. ) commercialized in Chile vol.11, pp.1, 2013, https://doi.org/10.1080/19476337.2012.688219
  5. On-Off Period Mechanism for Supporting Always Best Connected in IEEE 802.21 MIH Services pp.20103751, 2013, https://doi.org/10.7763/IJFCC.2013.V2.197
  6. Antibacterial Effect of the Ethanol Leaves Extract of Moringa oleifera and Camellia sinensis against Multi Drug Resistant Bacteria vol.13, pp.2, 2017, https://doi.org/10.3923/ijp.2017.156.165
  7. Review: Separation and Pharmacology of Chiral Compounds in Traditional Chinese Medicine vol.50, pp.1, 2017, https://doi.org/10.1080/00032719.2016.1169540
  8. Rooibos herbal tea: An optimal cup and its consumers vol.24, pp.1025-9848, 2019, https://doi.org/10.4102/hsag.v24i0.1090
  9. Lignans from the Flower Buds of Magnolia fargesii vol.26, pp.6, 2005, https://doi.org/10.5012/bkcs.2005.26.6.913
  10. Solid-Phase Extraction of Caffeine and Catechin Compounds from Green Tea by Caffeine Molecular Imprinted Polymer vol.28, pp.2, 2005, https://doi.org/10.5012/bkcs.2007.28.2.276
  11. Chiral Separation and Discrimination of Catechin by Microbial Cyclic β-(1→3),(1→6)-glucans Isolated from Bradyrhizobium japonicum vol.28, pp.2, 2005, https://doi.org/10.5012/bkcs.2007.28.2.347
  12. Phenolic content and antioxidative capacity of green and white tea extracts depending on extraction conditions and the solvent used vol.110, pp.4, 2005, https://doi.org/10.1016/j.foodchem.2008.02.072
  13. Gambier extracts as an inhibitor of calcium carbonate (CaCO3) scale formation vol.265, pp.1, 2005, https://doi.org/10.1016/j.desal.2010.07.038
  14. Influence of steeping conditions (time, temperature, and particle size) on antioxidant properties and sensory attributes of some white and green teas. vol.66, pp.5, 2005, https://doi.org/10.3109/09637486.2015.1042842
  15. On-column decaffeination and HPLC analysis of epigallocatechin gallate in green tea nutraceuticals vol.51, pp.4, 2016, https://doi.org/10.1080/01496395.2015.1116571
  16. Some Important Plants for Epilepsy Treatment: Antioxidant Activity and Flavonoid Compositions vol.42, pp.4, 2018, https://doi.org/10.1007/s40995-017-0361-3
  17. Reliable, accessible and transferable method for the quantification of flavanols and procyanidins in foodstuffs and dietary supplements vol.11, pp.1, 2005, https://doi.org/10.1039/c9fo02762a
  18. Single-Laboratory Validation for the Determination of Cocoa Flavanols and Procyanidins (by Degree of Polymerization DP1-7) in Cocoa-Based Products by Hydrophilic Interaction Chromatography Coupled wit vol.104, pp.2, 2005, https://doi.org/10.1093/jaoacint/qsaa132