DOI QR코드

DOI QR Code

Selective Crystallization of SAPO-5 and SAPO-34 Molecular Sieves in Alkaline Condition: Effect of Heating Method

  • Yoon, Ji-Woong (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology) ;
  • Jhung, Sung-Hwa (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology) ;
  • Kim, Young-Ho (Department of Fine Chemicals Engineering & Chamistry, Chungnam National University) ;
  • Park, Sang-Eon (Department of Chemistry, Inha University) ;
  • Chang, Jong-San (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology)
  • Published : 2005.04.20

Abstract

Crystallization of SAPO-5 and SAPO-34 molecular sieves with microwave and conventional electric heating of the same gel has been investigated in an alkaline condition using N,N,N’N’tetraethylethylenediamine as a template molecule. SAPO-5 structure can be selectively prepared with microwave heating because of the fast crystallization of the technique. On the other hand, SAPO-34 is the sole product with usual conventional electric heating because SAPO-5 can be gradually transformed into SAPO-34 structure with an increase in crystallization time. This phase selectivity is probably because of the relative stability of the two phases at the reaction conditions (kinetic effect). Crystallization with microwave heating can be suggested as a phase selective synthesis method for relatively unstable materials because of fast crystallization.

Keywords

References

  1. Wilson, S. T.; Lok, B. M.; Messina, C. A.; Cannan, T. R.; Flanigen, E. M. J. Am. Chem. Soc. 1982, 104, 1146 https://doi.org/10.1021/ja00368a062
  2. Davis, M. E. Nature 2002, 417, 813 https://doi.org/10.1038/nature00785
  3. Arafat, A.; Jansen, J. C.; Ebaid, A. R.; Bekkum, H. van Zeolites 1990, 13, 162 https://doi.org/10.1016/S0144-2449(05)80272-6
  4. Cundy, C. S. Collect. Czech. Chem. Commum. 1998, 63, 1699 https://doi.org/10.1135/cccc19981699
  5. Park, M.; Komarneni, S. Micropor. Mesopor. Mater. 1998, 20, 39 https://doi.org/10.1016/S1387-1811(97)00007-3
  6. Kim, K. Y.; Ahn, W. S.; Park, D. W.; Oh, J. H.; Lee, C. M.; Tai, W. P. Bull. Kor. Chem. Soc. 2004, 25, 634 https://doi.org/10.5012/bkcs.2004.25.5.634
  7. Park, S.-E.; Chang, J.-S.; Hwang, Y. K.; Kim, D. S.; Jhung, S. H.; Hwang, J.-S. Catal. Survey Asia 2004, 8, 91 https://doi.org/10.1023/B:CATS.0000026990.25778.a8
  8. Zhao, J. P.; Cundy, C.; Dwyer, J. Stud. Surf. Sci. Catal. 1997, 105, 181 https://doi.org/10.1016/S0167-2991(97)80554-X
  9. Xu, X.; Yang, W.; Liu, J.; Lin, L. Adv. Mater. 2000, 12, 195 https://doi.org/10.1002/(SICI)1521-4095(200002)12:3<195::AID-ADMA195>3.0.CO;2-E
  10. Kang, K.-K.; Park, C.-H.; Ahn, W.-S. Catal. Lett. 1999, 59, 45
  11. Jhung, S. H.; Chang, J.-S.; Hwang, Y. K.; Park, S.-E. J. Mater. Chem. 2004, 14, 280 https://doi.org/10.1039/b309142b
  12. Hwang, Y. K.; Chang, J.-S.; Kwon, Y.-U.; Park, S.-E. Micropor. Mesopor. Mater. 2004, 68, 21 https://doi.org/10.1016/j.micromeso.2003.12.004
  13. Hwang, Y. K.; Chang, J.-S.; Park, S.-E.; Kim, D. S.; Kwon, Y.-U.; Jhung, S. H.; Hwang, J.-S.; Park, M.-S. Angew. Chem. Intl. Ed. 2005, 44, 557
  14. Jhung, S. H.; Chang, J.-S.; Park, S.-E.; Forster, P. M.; Férey, G.; Cheetham, A. K. Chem. Mater. 2004, 16, 1394 https://doi.org/10.1021/cm035173c
  15. Jhung, S. H.; Lee, J.-H.; Yoon, J. W.; Hwang, Y. K.; Hwang, J.-S.; Park, S.- E.; Chang, J.-S. Mater. Lett. 2004, 58, 3161 https://doi.org/10.1016/j.matlet.2004.06.006
  16. Jhung, S. H.; Chang, J.-S.; Yoon, J. W.; Grenéche, J.-M.; Férey, G.; Cheetham, A. K. Chem. Mater. 2004, 16, 5552 https://doi.org/10.1021/cm049081e
  17. Jhung, S. H.; Chang, J.-S.; Hwang, Y. K.; Grenéche, J.-M.; Férey, G.; Cheetham, A. K. J. Phys. Chem. B 2005, 109, 845 https://doi.org/10.1021/jp046188g
  18. Jhung, S. H.; Chang, J.-S.; Hwang, J. S.; Park, S.-E. Micropor. Mesopor. Mater. 2003, 64, 33 https://doi.org/10.1016/S1387-1811(03)00501-8
  19. Jhung, S. H.; Lee, J.-H.; Yoon, J. W.; Hwang, J.-S.; Park, S.-E.; Chang, J.-S. Micropor. Mesopor. Mater. 2005, 80, 147 https://doi.org/10.1016/j.micromeso.2004.11.013
  20. Meier, W. M.; Olson, D. H. Atlas of Zeolite Structure Types; Butterworths: London, 1987; p 18 and p 42
  21. Inui, T. Stud. Surf. Sci. Catal. 1997, 105, 1441 https://doi.org/10.1016/S0167-2991(97)80787-2
  22. Bora, B. V.; Marker, T. L.; Barger, P. T.; Nilsen, H. R.; Kvisle, S.; Fuglerud, T. Stud. Surf. Sci. Catal. 1997, 107, 87 https://doi.org/10.1016/S0167-2991(97)80321-7
  23. Jhung, S. H.; Hwang, Y. K.; Chang, J.-S.; Park, S.-E. Micropor. Mesopor. Mater. 2004, 67, 151 https://doi.org/10.1016/j.micromeso.2003.10.012
  24. Wilson, S. T. Stud. Surf. Sci. Catal. 2001, 137, 229 https://doi.org/10.1016/S0167-2991(01)80247-0
  25. Jhung, S. H. PhD Thesis, Korea Adv. Inst. Sci. Tech.; Seoul, Korea, 1990
  26. Treacy, M. M. J.; Higgins, J. B.; Ballmoos, R. von Collection of Simulated XRD Powder Patterns for Zeolites; Elsevier: New York, 1996; p 352
  27. Treacy, M. M. J.; Higgins, J. B.; Ballmoos, R. von Collection of Simulated XRD Powder Patterns for Zeolites; Elsevier: New York, 1996; p 409
  28. Jhung, S. H.; Chang, J.-S.; Kim, D. S.; Park, S.-E. Micropor. Mesopor. Mater. 2004, 71, 135 https://doi.org/10.1016/j.micromeso.2004.03.026
  29. Concepcion, P.; Nieto, J. M. L.; Mifsud, A.; Perez-Pariente, J. Zeolites 1996, 16, 56 https://doi.org/10.1016/0144-2449(95)00097-6
  30. Inoue, M.; Dhupatemiya, P.; Phatanasri, S.; Inui, T. Micropor. Mesopor. Mater. 1999, 28, 19 https://doi.org/10.1016/S1387-1811(98)00278-9

Cited by

  1. Microwave Reaction Enhancement: The Rapid Synthesis of SAPO-11 Molecular Sieves vol.49, pp.3-4, 2008, https://doi.org/10.1007/s11244-008-9089-9
  2. Microwave Synthesis of a Nanoporous Hybrid Material, Chromium Trimesate vol.26, pp.6, 2005, https://doi.org/10.5012/bkcs.2005.26.6.880
  3. Low Temperature Adsorption of Hydrogen on Nanoporous Materials vol.26, pp.7, 2005, https://doi.org/10.5012/bkcs.2005.26.7.1075
  4. 마이크로파 가열에 의한 FAPO-5 분자체의 합성 및 특성 분석 vol.50, pp.1, 2005, https://doi.org/10.5012/jkcs.2006.50.1.053
  5. Structural aspects of mesoporous AlPO4-5 (AFI) zeotype using microwave radiation and alumatrane precursor vol.114, pp.1, 2005, https://doi.org/10.1016/j.micromeso.2008.01.002
  6. 마이크로파에 의한 Zeolitic Imidazolate Framework 물질, ZIF-8의 합성 vol.53, pp.5, 2005, https://doi.org/10.5012/jkcs.2009.53.5.553
  7. Effect of synthesis parameters on mesoporous SAPO-5 with AFI-type formation via microwave radiation using alumatrane and silatrane precursors vol.135, pp.1, 2005, https://doi.org/10.1016/j.micromeso.2010.06.018
  8. Screening of different zeolites and silicoaluminophosphates for the retention of propene under cold start conditions vol.130, pp.1, 2005, https://doi.org/10.1016/j.micromeso.2009.11.016
  9. Synthesis of SAPO-34 Using Different Combinations of Organic Structure-Directing Agents vol.2019, pp.None, 2005, https://doi.org/10.1155/2019/6197527
  10. Novel Cu-Based CHA/AFI Hybrid Crystal Structure Catalysts Synthesized for NH3-SCR vol.58, pp.39, 2005, https://doi.org/10.1021/acs.iecr.9b01273
  11. Down the Microporous Rabbit Hole of Silicoaluminophosphates: Recent Developments on Synthesis, Characterization, and Catalytic Applications vol.10, pp.None, 2005, https://doi.org/10.1021/acscatal.0c02278
  12. Evaluation of surfactant templates for one-pot hydrothermal synthesis of hierarchical SAPO-5 vol.306, pp.None, 2005, https://doi.org/10.1016/j.micromeso.2020.110364