Identification of a Novel Crystal Protein Gene from Bacillus thuringiensis Isolated in Korea

  • Kim, Yang-Su (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University) ;
  • Li, Ming-Shun (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University) ;
  • Kang, Joong-Nam (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University) ;
  • Wang, Yong (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University) ;
  • Choi, Hee-Kyu (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University) ;
  • Choi, Jae-Young (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University) ;
  • Je, Yeon-Ho (School of Agricultural Biotechnology, College of Agriculture & Life Sciences, Seoul National University)
  • Published : 2005.09.01

Abstract

To identify novel cry1-type crystal protein genes, 100 Bacillus thuringiensis (Bt) isolates were selected on the basis of their toxicity against lepidopteran insect larvae. For rapid search of a large quantity of novel genes simultaneously, Bt isolates were randomly divided into 2 groups including 50 isolates each. About 2.4 kb PCR fragments were amplified from each group using universal oligonucleotide primers, ATG1-F and N400-R, designed to probe the toxic fragment regions of all known and possible cry1-type genes. Restriction fragment length polymorphism (RFLP) analysis revealed 3 distinct patterns in each group. One of them, A32 clone showed 87% and 91% of nucleotide sequence and deduced amino acid sequence similarities with the cry1Ea gene. Interestingly, nucleotide sequence analysis of A32 cry gene suggested that this gene might have resulted from nucleotide rearrangement between cry1Ac and cry1Ea genes.

Keywords

References

  1. Ben-Dov, E., A. Zaritsky, E. Dahan, Z. Barak, R. Sinai, R. Manasherob, A. Khamraev, E. Troitskaya, D. Dubitsky, N. Berezina and Y. Margalith. 1997. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis, Appl. Environ. Microbiol. 63: 4883-4890
  2. Chang, J.H., J.Y. Roh, Y.H. Je, F.W. Park, B.R. Jin, S.D. Woo and S.K. Kang. 1998. Isolation of a strain of Bacillus thuringiensis ssp. kurstaki HD..l encoding $\delta$-endotoxin CrylE. Lett. Appl. Microbiol. 26: 387-390 https://doi.org/10.1046/j.1472-765X.1998.00355.x
  3. Crickmore, N., D.R. Zeigler, J. Feiielson, E. Schnepf, J. Van Rie, D. Lereclus, J. Baum and C.H. Dean. 1998. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 807-813
  4. Fitch, W.M. 1971. Toward defining the course of evolution: minimal change for a specific tree topology. Syst. Zool. 20: 406-416 https://doi.org/10.2307/2412116
  5. Glare, T.R. and M. O' Callaghan. 2000. Bacillus thuringiensis: Biology, Ecology and Safety. John Wiley & Sons, Chichester
  6. Gonzalez, J.M. and B.C. Carlton. 1980. Patterns of plasmid DNA in crystalliferous strains of Bacillus thuringiensis. Plasmid 3: 92-98 https://doi.org/10.1016/S0147-619X(80)90038-4
  7. Hwang, S.H., H. Saitoh, E. Mizuki, K. Higuchi and M. Ohba. 1998. A novel class of mosquitocidal $\delta$-endotoxin, Cry19B, encoded by a Bacillus thuringiensis serovar higo gene. System. Appl. Microbiol. 21: 179-184 https://doi.org/10.1016/S0723-2020(98)80022-2
  8. Johnson, C., A.H. Bishop and C.L. Turner. 1998. Isolation and activity of strain of Bacillus thuringiensis toxic to larvae of the housefly (Diptera: Muscidae) and tropical blowflies (Diptera: Calliphoridae). J. Invertebr. Pathol. 71: 138-144 https://doi.org/10.1006/jipa.1997.4720
  9. Kim, H.S., D.W. Lee, S.D. Woo, Y.M. Yu and S.K. Kang. 1998. Distribution, serological identification, and PCR analysis of Bacillus thuringiensis isolated from soils of Korea. Curr. Microbiol. 89: 16-23
  10. Kuo, W.S. and K.F. Chak. 1996. Identification of novel crytype genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA. Appl. Environ. Microbiol. 62: 1369-1377
  11. Marroquin, L.D., D. Elyassnia, J.S. Griffitts, J.S. Feitelson and R.V. Aroian. 2000. Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematodes Caenorhabditis elegans. Genetics 155: 1693-1699
  12. Ohba, M. and K. Aizawa. 1978. Serological identification of Bacillus thuringiensis and related bacteria isolated in Japan. J. Invertebr. Pathol. 32: 303-309 https://doi.org/10.1016/0022-2011(78)90193-3
  13. Schnepf, E., N. Crickmore, J. Van Rie, D. Lereclus, J. Baum, J. Feitelson, D.R. Zeigier and D.H. Dean. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806
  14. Schnepf, H.E. and H.R. Whiteley. 1981. Cloning and expression of the Bacillus thuringiensis crystal protein gene in Escherichia coli. Proc. Natl. Acad. Sci. USA 78: 2893-2897
  15. Stobdan, T., S. Kaur and A. Singh. 2004. Cloning and nucleotide sequence of a novel cry gene from Bacillus thuringiensis. Biotech. Lett. 26: 1153-1156 https://doi.org/10.1023/B:BILE.0000035488.85309.df
  16. Swofford, D.L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts. (on disk)
  17. Tounsi, S., A. J' Mal, N. Zouari and S. Jaoua. 1999. Cloning and nucleotide sequence ofa novel crylAa-type gene from Bacillus thuringiensis subsp. kurstaki. Biotechnol. Lett. 21: 771-775 https://doi.org/10.1023/A:1005579206907
  18. Wang, J., A. Boets, J. Van Rie and G. Ren. 2003. Characterization of cry1, cry2, and cry9 genes in Bacillus thuringiensis isolates from China. J. Invertebr. Pathol. 82: 63-71 https://doi.org/10.1016/S0022-2011(02)00202-1
  19. Whiteley, H.R. and E. Schnepf. 1986. The molecular biology of parasporal crystal body formation in Bacillus thuringiensis. Annu. Rev. Microbiol. 40: 549-576 https://doi.org/10.1146/annurev.mi.40.100186.003001