Gene Expression of Cotesia plutellae Bracovirus EP1-like Protein (CpBV-ELP1) in Parasitized Diamondback Moth, Plutellae xylostella

  • Lee, Kee-Woo (Department of Bioelectronic Engineering, Andong National University) ;
  • Cho, Sung-Hwan (Department of Agricultural Biology, Andong National Biology) ;
  • Lee, Hyuk-Soo (Department of Bioelectronic Engineering, Andong National University) ;
  • Choi, Jae-Young (School of Agricultural Biotechnology, Seoul National University) ;
  • Je, Yeon-Ho (School of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Yong-Gyun (Department of Agricultural Biology, Andong National Biology)
  • Published : 2005.09.01

Abstract

A genome project has been launched and aims to sequence total genome of Cotesia plutellae bracovirus (CpBV). This on-going research has identified several open reading frames (ORFs) including an EP1-like protein (ELP1). This study was intended to analyze gene expression of CpBV-ELP1 in the parasitized diamondback moth, Plutella xylostella. CpBV-ELP genomic DNA contains one intron (778 bp long). Its ORF consists of 726 bp encoding 241 amino acid residues. The hypothetical CpBV-ELP1 protein is predicted as 27,787.83 Da and possesses N-terminal signal peptide plus three potential N-glycosylation sites. Its amino acid sequence exhibits high homology with EP1 genes from C. congregata or C. karyai bracovirus. A reverse transcriptase-polymerase chain reaction (RT-PCR) indicated that CpBV-ELP1 was expressed only in P. xylostella parasitized by C. plutellae. The expression levels were measured by real time quantitative RT-PCRs during entire parasitization period at $25^{\circ}C$ culturing temperature. The expression began at the first day of parasitization and increased with the parasitization period. The ORF PCR product was cloned, over-expressed, and molecular weight of the purified protein was about 30 kDa.

Keywords

References

  1. Bae, S. and Y. Kim. 2004. Host physiological changes due to parasitism of a braconid wasp, Cotesia plutellae, on diamondback moth, Plutella xylostella. Comp. Biochem. Physiol. 138A: 39-44
  2. Basio, N.A. 2005. Origin, in vitro culture and host physiology alteration of Cotesia plutellae teratocytes. MS Thesis, 75pp. Andong National University, Andong, Korea
  3. Belle, E., N.E. Beckage, J. Rousselet, M. Poirie, F. Lemeunier and J.-M. Drezen. 2002. Visualization of polydnavirus sequences in a parasitoid wasp chromosome. J. Virol. 76: 5793-5796 https://doi.org/10.1128/JVI.76.11.5793-5796.2002
  4. Choi, J.Y., J.Y. Rho, J.N. Kang, H.J. Shim, S.D. Woo, B.R. Jin, M.S. Li and Y.H. Je. 2005. Genomic segments cloning analysis of Cotesia plutellae polydnavirus using plasmid capture system. Biochem. Biophys. Res. Comm. 332: 487-493 https://doi.org/10.1016/j.bbrc.2005.04.146
  5. Espagne, E., D. Catherine, E. Huguet, L. Cattolico, B. Provost, N. Martins, M. Poirie, G. Periquet and J.M. Drezen. 2004. Genome sequence of a polydnavirus: insights into symbiotic virus evolution. Science 306: 286-289 https://doi.org/10.1126/science.1103066
  6. Fleming, J .G. W. 1992. Polydnaviruses: mutualists and pathogens. Annu. Rev. Entomol. 37: 401-425 https://doi.org/10.1146/annurev.en.37.010192.002153
  7. Glatz, R., O. Schmidt and S. Asgari. 2003. Characterization of a novel protein with homology to C-type lectins expressed by the Cotesia rubecula bracovirus in larvae of the lepidopteran host, Pieris rapae. J. Biol. Chem. 278: 19743-19750 https://doi.org/10.1074/jbc.M301396200
  8. Harwood, S.H. and N.E. Beckage. 1994. Purification and characterization of an abundant polydnavirus-induced protein from the hemolymph of Manduca sexta larvae parasitized by Cotesia congregata. Insect Biochem. Mol. Biol. 24: 685-698 https://doi.org/10.1016/0965-1748(94)90056-6
  9. Harwood, S.H., J.S. McElfresh, A. Nguyen, C.A. Conlan and N .E. Beckage. 1998. Production of early expressed parasitism-specific protein in alternate sphingid hosts of the braconid wasp Cotesia congregata. J. Invertebr. Pathol., 71: 271-279 https://doi.org/10.1006/jipa.1997.4745
  10. Kim, Y. 2005. Identification of host translation inhibitory factor of Campoletis sonorensis ichnovirus on the tobacco budworm, Heliothis virescens. Arch. Insect Biochem. Physiol. 59: 230-244 https://doi.org/10.1002/arch.20074
  11. Kim, Y., S. Bae and S. Lee. 2004. Polydnavirus replication and ovipositional habit of Cotesia plutellae. Kor. J. Appl. Entomol. 43: 225-231
  12. Kim, Y. and J. Kim. 2004. Inhibitory effect of Cotesia plutellae bracovirus (CpBV) on development of a non-natural host, Spodoptera exigua. Kor. J. Appl. Entomol. 43: 217-223
  13. Krell, P.J., M.D. Summers and S.B. Vinson. 1982. Virus with a multipartitite superhelical DNA genome from the ichneumonid parasitoid, Campoletis sonorensis. J. Virol. 43: 859-870
  14. Kroemer, J.A. and B.A. Webb. 2004. Polydnavirus and genome: emerging gene families and new insights into polydnavirus replication. Annu. Rev. Entomol. 49: 431-456 https://doi.org/10.1146/annurev.ento.49.072103.120132
  15. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685 https://doi.org/10.1038/227680a0
  16. Lee, S. and Y. Kim. 2004. Juvenile hormone esterase of diamondback moth, Plutella xylostella, and parasitism of Cotesia plutellae. J. Asia-Pacific Entomol. 7: 283-287 https://doi.org/10.1016/S1226-8615(08)60228-9
  17. Livak, K.J. and T.D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25: 402-408 https://doi.org/10.1006/meth.2001.1262
  18. Norton, W.N., S.B. Vinson and D.B. Stoltz. 1975. Nuclear secretory particles associated with the ichneumonid parasitoid, Campoletis sonorensis. Cell Tissue Res. 162: 195-208
  19. Solovyev, V.V. and A.A. Salamov. 1999. INFOGENE: a database of known gene structures and predicted genes and proteins in sequences of genomic sequencing. Nucleic Acids Res. 27: 248-250 https://doi.org/10.1093/nar/27.1.248
  20. Stoltz, D.B. 1993. The polydnavirus life cycle. pp. 80-101, in Parasites and pathogens of insects, Vol, 1, Eds. N.E. Beckage, S.N. Thompson and B.A. Federici. Academic Press, New York
  21. Stoltz, D.B., N.E. Beckage, G.W. Blissard, J.G. Flemming, P.J. Krell, D.A. Theilmann, M.D. Summers and B.A. Webb. 1995. Polydnaviridae. pp. 143-147, in Virus taxonomy, Eds. F.A. Murphy, C.M. Fauquet, D.H.L. Bishop, S.A. Ghabrial, A.W. Jarvis, G.P. Martelli, M.A. Mayo and M.D. Summers. Springer-Verlag, New York
  22. Stoltz, D.B. and S.B. Vinson. 1979. Viruses and parasitism in insects. Adv. Virus Res. 24: 125-171 https://doi.org/10.1016/S0065-3527(08)60393-0
  23. Strand, M.R. and L.L. Pech. 1995. Immunological basis for compatibility in parasitoid-host relationships. Annu. Rev. Entomol. 40: 31-56 https://doi.org/10.1146/annurev.en.40.010195.000335
  24. Towbin, H., T. Staehelin and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76: 4350-4354
  25. Webb, B.A. 1988. Polydnavirus biology, genome structure and evolution. pp. 105-139, in The insect virus, Eds. L.K. Miller and A. Ball. Plenum Press, New York
  26. Whitfield, J.B. 1990. Parasitoids, polydnaviruses and ecdosymbiosis. Parasitol. Today 6: 381-384 https://doi.org/10.1016/0169-4758(90)90146-U