Spatial and Temporal Aspects of Phytoplankton Blooms in Complex Ecosystems Off the Korean Coast from Satellite Ocean Color Observations

  • Published : 2005.06.30

Abstract

Complex physical, chemical and biological interactions off the Korean coast created several striking patterns in the phytoplankton blooms, which became conspicuous during the measurements of ocean color from space. This study concentrated on analyzing the spatial and temporal aspects of phytoplankton chlorophyll variability in these areas using an integrated dataset from a Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Advanced Very High Resolution (AVHRR) sensor, and Conductivity Temperature Depth (CTD) sensor. The results showed that chlorophyll concentrations were elevated in coastal and open ocean regions, with strong summer and fall blooms, which appeared to spread out in most of the enclosed bays and neighboring waters due to certain oceanographic processes. The chlorophyll concentration was observed to range between 3 and $54\;mg\;m^{-3}$ inside Jin-hae Bay and adjacent coastal bays and 0.5 and $8\;mg\;m^{-3}$ in the southeast sea offshore waters, this gradual decrease towards oceanic waters suggested physical transports of phytoplankton blooms from the shallow shelves to slope waters through the influence of the Tsushima Warm Current (TWC) along the Tsushima Strait. Horizontal distribution of potential temperature $(\theta)$ and salinity (S) of water off the southeastern coast exhibited cold and low saline surface water $(\theta and warm and high saline subsurface water $({\theta}>12^{\circ}C; S>34.4)$ at 75dBar, corroborating TWC intrusion along the Tsushima Strait. An eastward branch of this current was called the East Korean Warm Current (EKWC), tracked with the help of CTD data and satellite-derived sea surface temperature, which often influenced the dynamics of mesoscale anticyclonic eddy fields off the Korean east coast during the summer season. The process of such mesoscale anticyclonic eddy features might have produced interior upwelling that could have shoaled and steepened the nutricline, enhancing phytoplankton population by advection or diffusion of nutrients in the vicinity of Ulleungdo in the East Sea.

Keywords

References

  1. Ahn, Y.H. and J.E. Moon. 1999. Specific absorption coefficients for the chlorophyll and suspended sediment in the Yellow and Mediterranean Sea. J. Kor. Soc. Remote Sens.,14, 353-365
  2. Ahn, Y.H., J.E. Moon, and S. Gallegos. 2001. Development of suspended particulate matter algorithms for ocean color remote sensing. Kor. J. Remote Sens., 17, 285-295
  3. Austin, R.W. 1974. Inherent spectral radiance signatures of the ocean surface. p. 195. In: Ocean color analysis. ed. by Scripps Institute of Oceanography. La Jolla, CA., USA
  4. Barton, I. 1995. Satellite-derived sea surface temperature: Current status. J. Geophy. Res., 100, 8777-8790 https://doi.org/10.1029/95JC00365
  5. Burkholder, J.M. 1998. Implications of harmful microalgae and heterotrophic dinoflagellates in management of sustainable marine fisheries. Ecol. Appl., 8, 37-62 https://doi.org/10.1890/1051-0761(1998)8[S37:IOHMAH]2.0.CO;2
  6. Byun, S.K. 1989. Sea surface cold water near the southeastern of Korea: Wind effect. J. Oceanol. Soc. Kor., 24, 121-131
  7. Chang, F.H., M. Uddstrom, and M. Pinkerton. 2001. Studies of the winter 2000 Gymnodinium catenatum outbreaks in New Zealand using remotely sensed sea surface temperature and chlorophyll a data from satellites. p. 165-173. In: Proceedings of the marine biotoxin science workshop No. 15. Wellington, New Zealand
  8. Chang, K., Y.B. Kim, M.S. Suk, and S.K. Byun. 2002. Hydrography around Dokdo. Ocean and Polar Res., 24, 369-389 https://doi.org/10.4217/OPR.2002.24.4.369
  9. Chang, K.I., M.S. Suk, I.G. Pang, and W.J. Teague. 2000. Observation of the Cheju Current. J. Kor. Soc. Oceanogr., 35, 129-152
  10. Cho, Y.K. and K. Kim. 1994. Two modes of the salinity minimum layer water in the Ulleung Basin. La Mer, 32, 271-278
  11. Cipollini, P., D. Cromwell, and G.C. Quartly. 1998. Observations of rossby wave propagation in the Northeast Atlantic with Topex/Poseidon altimetry. Adv. Space Res., 22, 1553-1556 https://doi.org/10.1016/S0273-1177(99)00069-1
  12. Cullen, J.J., A.M. Ciotti, R.F. Davis, and M.R. Lewis. 1997. Optical detection and assessment of algal blooms. Limnol. Oceanogr., 42, 1223-1239 https://doi.org/10.4319/lo.1997.42.5_part_2.1223
  13. Falkowski, P.G., D. Ziemann, Z. Kolber, and P.K. Bienfang. 1991. Role of eddy pumping in enhancing primary production in the ocean. Nature, 352, 55-58 https://doi.org/10.1038/352055a0
  14. Glover, D.M. and P.G. Brewer. 1988. Estimate of wintertime mixed layer nutrient concentration in the North Atlantic. Deep-Sea Res. I, 35, 1525-1546 https://doi.org/10.1016/0198-0149(88)90101-X
  15. Haddad, K.D. 1982. Hydrographic factors associated with west Florida toxic red tide blooms: An assessment for satellite prediction and monitoring. M.S. thesis, Univ. of South Florida, St. Petersburg, FL., USA
  16. Hooker, S.B. and E.R. Firestone. 2000. SeaWiFS pre-launch calibration and validation analysis. NASA Technical Memorandum 2000-206892, Vol. II. NASA Goddard Space Flight Centre
  17. Kim, H.G., J.S. Park, and S.G. Lee. 1990. Coastal algal blooms caused by the cyst-forming dinoflagellates. Bull. Kor. Fish. Soc., 23, 468-474
  18. Kim, K., H.K. Rho, and S.H. Lee. 1991. Water masses and circulation around Cheju-do in summer. J. Oceanol. Soc. Kor., 26, 262-277
  19. Kim, H.G., S.G. Lee, and K.H. An. 1997. Recent red tides in Korean waters. Kudeok Publishing, Busan, 280 p
  20. Kim, C.S., S.G. Lee, C.K. Lee, H.G. Kim, and J. Jung. 1999. Reactive oxygen species as causative agents in the ichthyotoxicity of the red tide diniflagellate Cochlodinium polykrikoides. J. Plankton Res., 21, 2105-2115 https://doi.org/10.1093/plankt/21.11.2105
  21. Kim, D., Y. Matsuyama, S. Nagasoe, M. Yamaguchi, Y.H. Yoon, and Y. Oshima. 2004. Effects of temperature, salinity and irradiance on the growth of the harmful red tide dinoflagellate Cochlodinium polykrikoides Margalef (Dinophyceae). J. Plankton Res., 26, 61-66 https://doi.org/10.1093/plankt/fbh001
  22. Kishino, M., S. Sugihara, and N. Okami. 1984. Estimation of quantum yield of chlorophyll a fluorescence from the upward irradiance spectrum in the sea. La Mer, 22, 233-240
  23. Lebedev, S.P. 1968. Caution: Red tides. Rybnoe Khozyaistvo, 5, 19-20 (In Russian)
  24. Lee, Y., J. Park, S.S. Kim, K.A. Jeon, Y.S. Kim, and J.H. Park. 1999. Characteristic of water quality by inflowing freshwater and diatom blooms in the eastern coast of Dolsan, Yosu, Korea. Bull. Nat. Fish. Res. Dev. Inst., 57, 111-117
  25. Li, L. 1993. Summer upwelling system over the northern continental shelf of the South China Sea: A physical description. p. 58-68. In: Proceedings of the Symposium on the Physical Oceanography of the China Seas. Beijing, China
  26. Li, X., W. Pichel., P. Clemente-Colon, V. Krasnopolsky, and L. Sapper. 2001. Validation of coastal sea and lake surface temperature measurements derived from NOAA/AVHRR data. Int. J. Remote Sens., 2, 1285-1303
  27. Lie, H.J., C.H. Cho, J.H. Lee, P. Niiler, and J.H. Hu. 1998. Separation of the Kuroshio water and its penetration onto the continental shelf west of Kyushu. J. Geophys. Res., 103, 2963-2976 https://doi.org/10.1029/97JC03288
  28. McGillicuddy, D.J. and A.R. Robinson. 1997. Eddy-induced nutrient supply and new production in the Sargasso Sea. Deep-Sea Res. I, 44, 1427-1450 https://doi.org/10.1016/S0967-0637(97)00024-1
  29. Mobley, C.D. and D. Stramski. 1997. Effects of microbial particles on oceanic optics: Methodology for radiative transfer modeling and example simulations. Limnol. Oceanogr., 42, 550-560 https://doi.org/10.4319/lo.1997.42.3.0550
  30. Morel, A. and J.F. Berthon. 1989. Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote-sensing applications. Limnol. Oceanogr., 34, 1545-1562 https://doi.org/10.4319/lo.1989.34.8.1545
  31. Nelson, D.M., J.J. McCarthy, T.M. Joyce, and H.W. Ducklow. 1989. Enhanced near-surface nutrient availability and new production resulting from the frictional decay of a Gulf Stream warm-core ring. Deep-Sea Res. I, 36, 705-714 https://doi.org/10.1016/0198-0149(89)90146-5
  32. Olaizola, M., D.A. Ziemann, P.K. Bienfang, W.A. Walsh, and L.D. Conquest. 1993. Eddy-induced oscillations of the pycnocline affect the floristic compostion and depth distribution of phytoplankton in the subtropical Pacific. Mar. Biol., 116, 533-542 https://doi.org/10.1007/BF00355471
  33. Orlova, T.Y., M.S. Selina, and I.V. Stonik. 1998. Distribution of potentially toxic and harmful microalgae in Peter the Great bay, the Sea of Japan, Russia. p. 86-88. In: Harmful Algae, ed. by B. Reguera. IOC of UNESCO Publishers
  34. Pearce, A. and C. Pattiaratchi. 1997. Applications of satellite remote sensing to the marine environment in Western Australia. J. Roy. Soc. Western Aust., 80, 1-14
  35. Pinca, S. and S. Dallot. 1997. Zooplankton community structure in the Western Mediterranean Sea related to mesoscale hydrodynamics. Hydrobiologia, 356, 127-142 https://doi.org/10.1023/A:1003151609682
  36. Schofield, O., L. Grzymski, W.P. Bissett, G.J. Kirkpatrick, D.F. Millie, M. Moline, and C. Roesler. 1999. Optical monitoring and forecasting systems for harmful algal blooms: possibility or pipe dream? J. Phycol., 35, 1477-1496 https://doi.org/10.1046/j.1529-8817.1999.3561477.x
  37. Senjyu, T. 1999. The Japan Sea Intermediate Water; Its characteristics and circulation. J. Oceanogr., 55, 111-122 https://doi.org/10.1023/A:1007825609622
  38. Shumway, S.E. 1990. A review of the effects of algal blooms on shellfish and aquaculture. J. World Aquacult. Soc., 21, 65-104 https://doi.org/10.1111/j.1749-7345.1990.tb00529.x
  39. Steidinger, K.A. and K.D. Haddad. 1981. Biologic and hydrographic aspects of red tides. Bioscience, 31, 814-819 https://doi.org/10.2307/1308678
  40. Stumpf, R.P. 2001. Applications of satellite ocean color sensors for monitoring and predicting harmful algal blooms. J. Hum. Ecol. Risk Assess., 7, 1363-1368 https://doi.org/10.1080/20018091095050
  41. Stumpf, R.P., M.E. Culver, P.A. Tester, M. Tomlinson, G.J. Kirkpatrick, B.A. Pederson, E. Turby, V. Ransibrahmanakul, and M. Soracco. 2003. Monitoring Karenia brevis blooms in the Gulf of Mexico using satellite ocean color imagery and other data. Harmful Algae, 2, 147-160 https://doi.org/10.1016/S1568-9883(02)00083-5
  42. Suh, Y.S., B.G. Mitchell, and K.S. Lim. 1999. A recurring eddy off the Korea northeast coast captured on satellite ocean color and sea surface temperature. J. Kor. Soc. Remote Sens., 15, 175-181
  43. Tang, D.L., D.R. Kester, I.H. Ni, H. Kawamura, and H. Hong. 2002. Upwelling in the Taiwan Strait during the summer monsoon detected by satellite and shipboard measurements. Remote Sens. Environ., 83, 457-471 https://doi.org/10.1016/S0034-4257(02)00062-7
  44. Tang, D.L., H. Kawamura, M.N. Lee, and T.V. Dien. 2003. Seasonal and spatial distribution of chlorophyll-a concentrations and water conditions in the Gulf of Tonkin, South China Sea. Remote Sens. Environ., 85, 475-483 https://doi.org/10.1016/S0034-4257(03)00049-X
  45. Tester, P.A. and R.P. Stumpf. 1998. Phytoplankton blooms and remote sensing: what is the potential for early warning. J. Shellfish Res., 17, 1469-1471
  46. Tomlinson, M.C., R.P. Stumpf, V. Ransibrahmanakul, E.W. Truby, G.J. Kirkpatrick, B.A. Pederson, G.A. Vargo, and C.A. Heil. 2004. Evaluation of the use of SeaWiFS imagery for detecting Karenia brevis harmful algal blooms in the eastern Gulf of Mexico. Remote Sens. Environ., 91, 293-303 https://doi.org/10.1016/j.rse.2004.02.014
  47. Yoon, J.H. 1982. Numerical experiment on the circulation in the Japan Sea, Part 1. Formation of the East Korean Warm Current. J. Oceanogr. Soc. Jpn., 38, 43-51 https://doi.org/10.1007/BF02110289