Carboxylated Nitrile Elastomer/Filler Nanocomposite: Effect of Silica Nanofiller in Thermal, Dynamic Mechanical Behavior, and Interfacial Adhesion

  • Mahaling R. N. (Materials Science Centre, Indian Institute of Technology) ;
  • Jana G. K. (Materials Science Centre, Indian Institute of Technology) ;
  • Das C. K. (Materials Science Centre, Indian Institute of Technology) ;
  • Jeong, H. (Department of Polymer Science and Engineering, Pusan National University) ;
  • Ha C. S. (Department of Polymer Science and Engineering, Pusan National University)
  • Published : 2005.08.31

Abstract

Surface modified nanofillers are often used as curative-cum reinforcing agents for functional polymers. The polymer nanofiller interaction depends on the curative systems used. In the present study the carboxylic group of the carboxylated nitrile elastomer participated in the reaction with Zn-ion coated nanosilica filler producing a type of ionomeric elastomer. The interaction at the molecular level thus produced a high modulus vulcanizate. In this case, the S and MBT system, as curative, had an edge over the MDA and DPG curative system. Interfacial adhesion was enhanced in the presence of Zn-ion-coated nanosilica filler associated with dynamic mechanical behavior. The inferior properties obtained in the case of the MDA and DPG curative system were due to the decreased reactivity of the silica surface, thus reducing interfacial adhesion.

Keywords

References

  1. L. E Bros, WL Brown, R. P. Andess, R. S. Averback, W. A. Goddard, A. Kaldor, S. G. louie, M. Maskovits, P. S. Peercy, S. J. Riley, R. W. Siegel, F. A. Speapen, and Y. Wang, J. Mater. Res., 4, 704 (1989) https://doi.org/10.1557/JMR.1989.0704
  2. T. Appenzeller, Science, 254, 1300 (1991) https://doi.org/10.1126/science.254.5036.1300
  3. W. Cooper, J. Polym. Sci., 28, 811 (1958)
  4. A. V. Tobolsky, P. Elyons, and N. Hata, Macromolecules, 1, 515 (1968) https://doi.org/10.1021/ma60006a012
  5. V. L. Hallensback, Rubber Chern. Technol., 46, 78 (1973). https://doi.org/10.5254/1.3545024
  6. M. Pineri, C. Meyer, A. M. Levelut, and M. Lambert. J. Polym. Sci., Polym. Phys. Ed., 12, 115 (1974) https://doi.org/10.1002/pol.1974.180120110
  7. H. Matsuda, J. Appl. Polym. Sci., 24, 811(1979) https://doi.org/10.1002/app.1979.070240317
  8. K. Sato, Rubber Chern. Technol., 56, 942 (1983) https://doi.org/10.5254/1.3538174
  9. R. Jerome and G. Broze, Rubber Chern. Technol., 58, 223 (1985) https://doi.org/10.5254/1.3536062
  10. P. H. Starmer, Plastics and Rubber Processing and Applications, 9, 209 (1988)
  11. G. R. Hamed and K. T. Han, Rubber Chern. Technol., 63, 806 (1990) https://doi.org/10.5254/1.3538290
  12. S. Bandopadhya, P. P .De, D. K. Tripathy, and S. K. De, Rubber Chern. Technol., 69, 638 (1996)
  13. L. Ibarra and M. Alzorizz, Polym., 48, 580 (1999)
  14. L. Ibarra, J. Appl. Polym. Sci., 73, 927 (1999) https://doi.org/10.1002/(SICI)1097-4628(19990808)73:6<927::AID-APP9>3.0.CO;2-P
  15. L. Gong, R. P Wool, A. D. Friend, and K. Geranov, J. Polym. Sci.; Part A: Polym. Chem., 37, 3129 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990815)37:16<3129::AID-POLA10>3.0.CO;2-0
  16. X. Yuan, Z. Peng, and Y. Zhang, J. Appl. Polym. Sci., 71, 2740 (2000)
  17. M. Ree, J. Y. Bae, J. H. Jung, and T. J. Shin, Korea Polym. J., 7, 333 (1999)
  18. M .Ree, J. Y. Bae, J. H. Jung, T. J. Shin, Y. T. Hwang, and T. Chang, Polymer Eng. Sci., 40, 1542 (2000) https://doi.org/10.1002/pen.11284
  19. N. G Gaylod, H. Endes, L. Davis, and A. Takahashi, in Modification of Polymers, C. E. Carraher and Tsuda, Eds., ACS Symp. SET 121, Wasington, DC, 1980
  20. A. Voet, J. Polym. Sci. Macromol. Rev., 15, 327, (1980) https://doi.org/10.1002/pol.1980.230150107
  21. E. M. Dannenberg, Rubber Chem. Technol., 48, 410 (1975) https://doi.org/10.5254/1.3547460
  22. M. Q. Pelterman, Rubber World, 194, 38 (1986)
  23. Y. Au, Z. Yu, A. Vidal, and J. B. Donnet, Rubber Chern Technol., 67, 834 (1994) https://doi.org/10.5254/1.3538714
  24. A. I. Kanser and E. A. Meinecke, Rubber Chern Technol., 68, 219 (1994)
  25. T. Liu, L. Z. Liu, and B. Ghu, J. Appl. Chem., 18, 59 (2001)
  26. I. Cendoya, D. Lopez, A. Algeria, and C. Mijangos, J. Polym. Sci.; Part B: Polym. Phys., 39, 1968 (2001) https://doi.org/10.1002/1099-0488(20010101)39:1<1::AID-POLB10>3.0.CO;2-4
  27. G. Carotenuto, X. Xuejun, and L. Nicolais, Polym. New., 25, 6 (2000)
  28. S. Ruan, J. J. Lannutti, and S. Prybyla, et al., J. Mater. Res., 16, 1975 (2001) https://doi.org/10.1557/JMR.2001.0001
  29. A. Krysztafkieqicz, Colloid. Polym. Sci., 267, 399 (1989) https://doi.org/10.1007/BF01410184
  30. K. Chanvoot and L. W. James, J. Appl. Polym. Sci., 78, 1551 (2000) https://doi.org/10.1002/1097-4628(20001121)78:8<1551::AID-APP120>3.0.CO;2-#
  31. F. Yang, Y. C. Au, and Z. Z. Yu, J. Appl. Polym. Sci., 69, 335 (1998)
  32. N. G. Sahoo, C. K. Das, A. B. Panda, and P. Pramanik, Macromol. Res., 10, 369 (2002) https://doi.org/10.1007/BF03218282
  33. N. G. Sahoo, E. Shiva Kumar, C. K. Das, A. B. Panda, and P. Pramanik, Macromol. Res., 11, 506 (2003) https://doi.org/10.1007/BF03218984
  34. L. Ibarra and C. Jorda, J. Appl. Polym. Sci., 48, 375 (1993) https://doi.org/10.1002/app.1993.070480301
  35. F. P LA Mantia and A. Valenja, Eur. Polym. J., 21, 811 (1985) https://doi.org/10.1016/0014-3057(85)90156-9