Seasonal Variations of Sediment Oxygen Demand and Denitrification in Kanghwa Tidal Flat Sediments

강화도 갯벌 퇴적물의 산소요구량과 탈질소화의 계절 변화

  • An, Soon-Mo (Department of Marine Science, Pusan National University)
  • Published : 2005.02.28

Abstract

Seasonal variations of remineralization and inorganic nitrogen removal capacity were measured from Dec. 2001 to Apr. 2004 in a tidal flat located in south-western pan of Gwanghwa island, Korea by measuring the sediment oxygen demand (SOD) and denitrification. SOD was higher in muddy sediment (Dong-Mak; three year average=$683;m^{-2}d^{-1}$) than sandy sediment(Yeocha; three year average=$457;m^{-2}d^{-1}$). The SOD was high in summer and tended to be lower in winter. During the sediment incubation in Apr. 2002, production of oxygen from sediment was observed implying active benthic photosynthesis. Denitrification was also higher in muddy sediment (Dong-Mak: $5.4;m^{-2}d^{-1}$) than sandy sediment (Yeocha; $3.4;m^{-2}d^{-1}$). The denitrification rate corresponds to the carbon remineralization rate of 9.3 and $5.9\;mg-C\;m^{-2}d^{-1}$ in Dong-Mak and Yeocha, respectively. The denitrification rates were lower compared to rates observed in other coastal area $(0{\sim}200\;{\mu}mole\;m^{-2}h^{-1})$. Although Kwanghwa tidal flat sediments are replete in organic matter, remineralization activity seems to be limited by the availability of labile organic matter. The Kwangwha tidal flat may have potential to effectively remove large load of organic matter. Net remineralization rates were 196 and $132\;mg-C\;m^{-2}d^{-1}$ in Dong-Mak and Yeocha, respectively.

2001년 12월부터 2004년 4월까지 강화도 남서부에 위치한 동막 및 여차리 갯벌에서 계절별로 퇴적물의 산소요구량과 탈질소화를 측정하여 퇴적물의 유기물 분해와 질소 영양염의 제거과정을 살펴보았다. 퇴적물 산소 요구량 (SOD;sediment oxygen demand)은 니질 함량이 높은 동막이 평균 $683\;{\mu}mole\;m^{-2}h^{-1}$이었고, 사질 함량이 높은 여차리에서 평균 $457\;{\mu}mole\;m^{-2}h^{-1}$로 동막에서 높은 값을 보였다. SOD는 여름철에 높고, 겨울철에 낮은 경향을 보였는데, 2002년 4월에는 산소가 퇴적물에 의해 소비되기보다는 생산되어 저서성 규조류에 의한 광합성이 활발함을 알 수 있었다. 탈질소화도 동막이 높고 여차리가 낮았는데, 그 값은 각각 5.4와 $3.4\;{\mu}mole\;m^{-2}h^{-1}$이며, 유기물로는 $9.3\;mg-C\;m^{-2}d^{-1}$$5.9\;mg-C\;m^{-2}d^{-1}$에 해당하는 양이다. 염습지를 포함한 연안 퇴적물의 탈질소화율은 $0{\sim}200{\mu}mo1e\;m^{-2}h^{-1}$의 범위에 있는데, 본 조사의 값은 낮은 편에 속했다. 탈질소화가 낮은 것은 갯벌이 유기물 농도가 높은 환경임에도 불구하고 분해하기 쉬운 신선한 유기물은 부족하여 전반적인 유기물 분해율이 낮은 것으로 사료된다. 이는 평소에는 낮은 탈질소화를 보이나, 고농도의 유기물이 유입되면, 이를 효과적으로 제거할 잠재적 능력이 있음을 시사한다. 산소요구량과 무기탄소 용출량을 통해 살펴본 강화갯벌의 유기물 순분해율(net remineralization rate)은 동막이 평균 $196\;mg-C\;m^{-2}d^{-1}$이고 여차리가 평균 $132\;mg-C\;m^{-2}d^{-1}$이었다.

Keywords

References

  1. 고철환, 2001. 한국의 갯벌. 서울대학교출판부, 서울, 1074 pp
  2. 나태희, 이동섭, 2004. 공극수 모델로 추정한 강화도 갯벌의 탈질 산화 작용. 한국해양학회지, 바다 (투고중)[kin1]
  3. 나태희, 2003. 강화도 갯벌의 탈진산화 작용에 관한 연구. 이학석사학위 논문, 부산대학교, 54pp
  4. 심정희, 강영철, 최진우, 1997. 남해안 통영지역 가두리양식장 해수-퇴적물 경계면에서의 chemical fluxes. 한국해양학회지, 2(2): 151-159
  5. 목진숙, 조혜연, 현정호, 2004. 강화도 남단 갯벌의 혐기성 유기물 분해능과 환산염 환원력: 저서동물의 잠재적 영향. 한국해양학회지, 바다, (투고중)
  6. 안순모, 2004. 인공 개펄을 이용한 마산만 오염물질의 자연 정화연구. 한국과학재단, 특정기초연구 최종 보고서, 89 pp
  7. 양은진, 최중기, 유만호, 조병철, 2004. 강화도 펄 갯벌에서 저서원생동물의 계절 분포 및 섭식률. 한국해양학회지, 바다, (투고중)
  8. 유만호, 송태윤, 최중기, 2004, 강화도 갯벌의 저서미세조류 군집의 분포 및 일차생산. 한국해양학회지, 바다, (투고중)
  9. 해양수산부, 1998. 해양환경공정시험방법. 해양수산부고시 제 1998-4호, 316 pp
  10. 홍재상, 2003. 한국의 갯벌. 대원사, 서울, 143 pp
  11. 환경부, 1991. 1991 자연생태계 지역조사 [서해안 간석지(강화도 남단)조사]. 1995. [kin2]
  12. 황청연, 조병철, 2004. 산소 미세전극을 이용한 강화군과 인천 북항 조간대 갯벌의 순광합성률 측정. 한국해양학회지, 바다, (투고중)
  13. Alongi, D.M., F. Tirendi, P. Dixon, L.A. Trott and G.J. Brunskill, 1999. Mineralization of organic matter in intertidal sediments of tropical semienclosed delta. Esturine, Coastal and shelf reserch., 48: 451-467 https://doi.org/10.1006/ecss.1998.0465
  14. An, S., W.S. Gardner and T. Kana, 2001. Simultaneous measurement of denitrification and nitrogen fixation using isotope pairing with membrane inlet mass spectrometer (MIMS) analysis. App. Env. Microbiol., 67(3): 1171-1178 https://doi.org/10.1128/AEM.67.3.1171-1178.2001
  15. An, S. and S.B. Joye, 1997. An improved chromatographic method to measure nitrogen, oxygen, argon and methane in gas or liquid samples. Mar. Chem., 59: 63-70 https://doi.org/10.1016/S0304-4203(97)00048-0
  16. An, S. and S.B. Joye, 2001. Enhancement of coupled nitrificationdenitrification by benthic photosynthesis in shallow estuarine sediments. Limnol. Oceanogr., 46(1): 62-74 https://doi.org/10.4319/lo.2001.46.1.0062
  17. Brandes, J.A. and A.H. Devol, 1995. A marine isotopic nitrogen budget: Implications for present and past nutrient balances. EOS., 76(3): 134-138
  18. Capone, D.G., 1988. Benthic Nitrogen fixation. In: Nitrogen Cycling in Coastal Marine Environments, edited by Blackburn, T.H. and J. Sorensen, Wiley
  19. Capone, D.G. and R.P. Kiene, 1988. Comparison of microbial dynamics in marine and freshwater sediments: Comtrast in anaerobic carbon metabolism. Limnol. Oceanogr., 33: 725-740 https://doi.org/10.4319/lo.1988.33.4_part_2.0725
  20. Cornwell, J.C., W.M. Kemp and T.M. Kana, 1999. Denitrification in coastal ecosystems: methods, environmental controls and ecosystem level controls, a review. Aquat Ecol., 33: 41-54 https://doi.org/10.1023/A:1009921414151
  21. Dollar, S.J., S.V. Smith, S.M. Vink, S. Obrebski and J.T. Hollibaugh, 1991. Annual cycle of benthic nutrient fluxes in Tomales Bay, California and contribution of the benthos to total ecosystem metabolism. Mar. Ecol. Prog. Ser., 79: 115-125 https://doi.org/10.3354/meps079115
  22. Hargrave, B.T. and G.A. Phillips, 1981. Annual in situ carbon dioxide and oxygen flux across a subtidal marine sediments. Esturine, Coastal and shelf science., 12: 725-737 https://doi.org/10.1016/S0302-3524(81)80068-0
  23. Hendriksen, K. and W.M. Kemp, 1988. Nitrification in estuarine and coastal marine sediments: Methods, patterns and regulating factors. In: Nitrogen Cycling in Coastal Marine Environments, edited by Blackburn, T.H. and J. Sorensen, Wiley
  24. Herbert, R.A., 1999. Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol reviews., 23: 563-590 https://doi.org/10.1111/j.1574-6976.1999.tb00414.x
  25. Howarth, R.W., R. Marino, J. Lane and J.J. Cole, 1988. Nitrogen fixation in freshwater, estuarine and marine ecosystems. I. Rates and Importance[kim3]. Limnol Oceanogr., 33: 669-687 https://doi.org/10.4319/lo.1988.33.4_part_2.0669
  26. Howes, B.L., J.W.H. Dacey and G.M. King, 1984. Carbon flow through oxygen and sulfate reduction pathways in salt marsh sediments. Limnol. Oceanogr., 29(5): 1037-1051 https://doi.org/10.4319/lo.1984.29.5.1037
  27. Jorgensen, B.B., 1977. The sulfur cycle of a coastal marine sediment (Limfjorden, Denmark). Limnol. Oceanogr., 22: 814-832 https://doi.org/10.4319/lo.1977.22.5.0814
  28. Joye, S.B. and H.W. Paerl, 1994. Nitrogen cycling in microbial mats: Rates and patterns of denitrification and nitrogen fixation. Mar Biol., 119(2): 285-295 https://doi.org/10.1007/BF00349568
  29. Kana, T.M., C. Darkangelo, M.D. Hunt, J.B. Oldham, G.E. Bennett and Cornwell, 1994. Membrane inlet mass spectrometer for rapid high-precision determination of $N_{2}$, $O_{2}$, and Ar in environmental water samples. Anal. Chem., 66(23): 4166-4170 https://doi.org/10.1021/ac00095a009
  30. Kemp, W.M., P. Sampou and M. Mayer, 1990. Ammonium recycling versus denitrification in Chesapeake Bay Sediment. Limnnol. Oceanogr., 35(7): 1545-1563 https://doi.org/10.4319/lo.1990.35.7.1545
  31. Knowles, R., 1990. Acetylene inhibitions technique: Development, advantage, and potential problems. In: FEMS Symp on Denitrification in soils and sediment, edited by Revsbech, N.P. and J., Sorensen, Plenum, 56: 1151-1166
  32. Koike, I. and A. Hattori, 1979. Estimates of denitrification in sediments of Bering Sea shelf. Deep-Sea Res., 26: 409-15 https://doi.org/10.1016/0198-0149(79)90054-2
  33. Koike, I, and J. Sorensen, 1988. In: Nitrate Reduction and Denitrification in Marine Sediments, edited by Blackburn, T. H. and J. Sorensen, Nitrogen Cycling in Coastal Marine Environments, Wiley
  34. Kristensen, E, 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia., 426: 1-24 https://doi.org/10.1023/A:1003980226194
  35. Lamontagne, M.G. and I. Valiela. 1995. Denitrification measurement by a direct $N_{2}$ flux method in sediment of Waquoit Bay, MA. Biogeochem., 31(2): 63-83 https://doi.org/10.1007/BF00000939
  36. Lavrentyev, P, Gardner, W.S, Yang, L. 2000. Effects of the Zebra mussel on microbial composition and nitrogen dynamics at the sediment-water interface in Saginaw Bay, Lake Huron. Aquat Microb ecol., 21: 187-194 https://doi.org/10.3354/ame021187
  37. Mackin, J.E and K.T. Swider, 1989. Organic matter decomposition pathways and oxygen consumption in coastal marine sediments. Journal of Marine research., 47: 681-716 https://doi.org/10.1357/002224089785076154
  38. Nielson, L.P., 1992. Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microb Ecol., 86: 357-362 https://doi.org/10.1111/j.1574-6968.1992.tb04828.x
  39. Pinckney, J. and R.G. Zingma, 1991. Effecs of tidal stage and Sun angles on intertidal benthic microalgal productivity. Mar. Ecol. Prog. Ser., 76: 81-89 https://doi.org/10.3354/meps076081
  40. Pinckney, J., D. Millie, B. Vinyard and H. Paerl, 1997. Environmental controls of phytoplankton bloom dynamics in the Neuse River Estuary, NC, USA. Canadian Journal of Fisheris and Aquatic science., 54: 2491-2501 https://doi.org/10.1139/cjfas-54-11-2491
  41. Rasheed, M., C. Wild, U. Franke and M. Huettel, 2004. Benthic pho-tosynthesis and oxygen consumption in permeable carbonate sediments at Heron Island, Great Barrier Reef, Australia
  42. Rowe, G.T., C.H. Clifford, J.K. Smith and P.L. Hamilton, 1975. Benthic nutrient regeneration and its coupling to primary productivity in coastal waters. Nature., 255: 215-217 https://doi.org/10.1038/255215a0
  43. Ryther, J.M. and W.M. Dunston, 1971. Nitrogen, phosphorus and eutrophication in the coastal marine environment. Science., 171: 1008-1013 https://doi.org/10.1126/science.171.3975.1008
  44. Rysgaard-Peterson, N., S. Rysgaard, L.P. Niesen and N.P Revsbech, 1994. Diumal variation of denitrification and nitrification in sediments colonized by benthic microphytes. Limnol. Oceanogr., 39: 573-579 https://doi.org/10.4319/lo.1994.39.3.0573
  45. Seike, T., H. Izawa and E. Date, 1989. Benthic nutrient remineralization and oxygen consumption in the coastal area of Hiroshima Bay. Japan. Water Research., 23: 219-228 https://doi.org/10.1016/0043-1354(89)90046-8
  46. Seitzinger, S.P., L.P. Nielson, J.M. Caffrey and P.B. Christen, 1994. Denitrification measurements in aquatic sediments: A comparison of three methods. Biogeochem., 23: 147-167
  47. Seitzinger, S.P., 1990. Denitrification in aquatic sediments. In: FEMS Symposium on Denitrification in soil and sediment edited by Revsbech, N.P. and J. Sorensen, Plenum, 56: 301-322
  48. Seitzinger, S.P., 1988. Denitrification in freshwater and coastal marine ecosystem: Ecological and geochemical significance. Limnol. Oceanogr., 33: 702-724 https://doi.org/10.4319/lo.1988.33.4_part_2.0702
  49. Seitzinger, S.P., S.W. Nixon, M.E.Q. Pilson and S. Burke, 1980. Denitrification and nitrous oxide production in near shore marine sediments. Geochimica Cosmochimica Acta., 44: 1853-1860 https://doi.org/10.1016/0016-7037(80)90234-3
  50. Strickland, J.D.H. and T.R. Parson, 1977. A practical handbook of seawater analysis. Fisheries researchboard of Canada, Ottawa, 310 pp
  51. Tiedje, J.M., AJ. Sexstone, DD. Myrold and JA. Robinson, 1989. Denitrification: ecological niches, competition and survival. Antonie van Leeuwenhoek., 48: 569-583 https://doi.org/10.1007/BF00399542