Discrimination of Sediment Provenance Using $^{87}Sr/^{86}Sr$ Ratios in the East China Sea

$^{87}Sr/^{86}Sr$비를 이용한 동중국해 대륙붕 퇴적물의 기원 연구

  • 윤정수 (제주대학교 해양과학대학 해양학과) ;
  • 임동일 (한국해양연구원 해저환경자원연구본부) ;
  • 변종철 (제주대학교 자연과학대학 화학과) ;
  • 정회수 (한국해양연구원 해저환경자원연구본부)
  • Published : 2005.02.28

Abstract

To discriminate the provenance of shelf sediments in the East China Sea, textural and elemental compositions along with strontium isotopic ratio ($^{87}Sr/^{86}Sr$) were analyzed and compared with the sediments originated from Chinese rivers. The sediments in the study area are composed of fine-grained mud with a mean grain size of $47\;{\phi}$ and their $CaCO_3$, contents range from 3.9 to 11.5% (average 7.6%). In the study area, the content of most metallic elements are strongly constrained by sediment grain size (quartz dilution effect) and that of biogenic material and, thereby, their spatial distribution seems not enough for understanding sediment provenance in the study area. The muddy sediments of the Yangtze river have much lower $^{87}Sr/^{86}Sr$ ratio ($0.71197{\sim}0.71720$) than the Yellow Sea shelf muddy sediments which are supposed to be originated from the Huanghe river ($0.72126{\sim}0.72498$), suggesting the distribution pattern of $^{87}Sr/^{86}Sr$ ratios as a new tracer to discriminate the provenance of shelf sediments in the study area. Different source rock compositions and weathering processes between both drainage basins may account for the differences in $^{87}Sr/^{86}Sr$ ratio. Although the ratios show wide range, from 0.71445 to 0.72184 with an average 0.71747 in the study area, they are close to the values of the Yangtze river sediments, suggesting that the sediments were mainly originated from the Yangtze river. The previous studies on the dispersal pattern of modern sediments and the physico-chemical properties of seawater in the Yellow and East China seas support the possibility that the fine-grained Yangtze river sediments can reach to the East China Sea shelf as well as to the southeastern Yellow Sea.

동중국해 대륙붕 니질 퇴적물의 기원을 밝히기 위해 퇴적물 중 주성분 원소들의 함량과 스트론튬 동위원소 비를 분석하였으며, 그 결과를 황하 및 양쯔 강 기원으로 추정되는 퇴적물의 자료와 비교 연구 하였다. 연구해역 퇴적물은 평균입도 $4{\sim}7\;\Phi$ 범위의 니질 퇴적상으로 구성되며, 탄산염 함량은 $3.9{\sim}11.5%$(평균 7.6%)범위이다 연구해역에서 대부분의 원소들의 함량과 공간 변화는 퇴적물의 입도와 해양 기원 물질 등 다양한 요인에 의해 조절되며, 그 결과 퇴적물의 근원지에 따른 원소들의 함량 차이를 구분하는 것은 어려운 것으로 판단된다. 니질($63\;{\mu}m$ 이하) 퇴적물 부분만을 대상으로 탄산염을 제거한 후, 스트론튬 동위원소를 분석한 결과 연구해역 퇴적물의 $^{87}Sr/^{86}Sr$ 비는 $0.71445{\sim}0.72184$(평균 0.71747) 범위였으며, 양쯔 강 기원으로 해석되는 퇴적물의 $^{87}Sr/^{86}Sr$비는 $0.71197{\sim}0.71720$ 범위로, $0.72126{\sim}0.72498$ 범위의 값을 갖는 황하 강 기원으로 추정되는 퇴적물(산동반도 주변 해역 및 황해 중앙니질 퇴적물)보다 뚜렷이 낮다. 따라서 스트론튬 동위원소의 $^{87}Sr/^{86}Sr$비는 황하 강과 양쯔 강 기원의 퇴적물을 구분해 주는 유용한 지화학적 지시자로 제시될 수 있다. 또한, 연구해역의 니질 퇴적물은 기존의 연구결과와 달리 양쯔 강 기원이 우세한 것으로 해석되며, 최근 황해와 동중국해에서 보고된 퇴적물 이동 패턴과 물리.화학적 특성 자료는 이러한 해석을 뒷받침한다.

Keywords

References

  1. Ahn, Y-H., P. Shanmugam and S. Gallegos, 2004. Evolution of suspended sediment patterns in the East China and Yellow Seas. J. Korean Soc. Oceanogr., 39: 26-34
  2. Asahara, Y., T. Tanaka, H. Kamioka and A. Nishimura, 1995. Asian continetnal nature of 87Sr/86Sr ratios in north central Pacific sediments. Ear. Planet. Sci. Lett., 133: 105-116 https://doi.org/10.1016/0012-821X(95)00048-H
  3. Alexander, C.X., D.J. DeMaster and C.A. Nittrouer, 1991. Sediment accumulation in a modem epicontinental-shelf setting in the Yellow Sea. Mar. Geol., 98: 51-72 https://doi.org/10.1016/0025-3227(91)90035-3
  4. Beardsley, R.C., R. Limebumer, D. Hu, K. Le, G.A. Cannon and D.J. Pashinski, 1983. Structure of the Changjiang plume in the East China Sea. Sedimentation on the Continental Shelf with Special Reference to the East China Sea, Vol. 2, China Ocean Press, 265-284
  5. Capo, R.C, B.W. Stewart and O.A. Chadwick, 1998. Strontium isotpes as tracers of ecosystem processes: theory and methods. Geoderma, 82: 197-225 https://doi.org/10.1016/S0016-7061(97)00102-X
  6. Cho, Y.G., C.B. Lee and M.S. Choi, 1999. Geochemistry of surface sediments off the southern and western coast of Korea. Mar. Geol., 159: 111-129 https://doi.org/10.1016/S0025-3227(98)00194-7
  7. Dasch, E. J., 1969. Sr isotope in weathering profiles, deep-sea sediments and sedimentary rocks. Geochim. et Cosmo. Acta, 33: 1521-1552 https://doi.org/10.1016/0016-7037(69)90153-7
  8. DeMaster, D.J., B.A. Mckee, C.A. Nittrourer, J. Qian and G. Cheng, 1985. Rates of sediment accumulation and particle reworking based on radiochemical measurement from continental shelf deposit in the East China Sea. Cont. Shelf Res., 4: 143-158 https://doi.org/10.1016/0278-4343(85)90026-3
  9. Douglas, G.B., C.M. Gray, B.T. Hart and R. Beckett, 1995. A strontium isotopic investigation of the origin of suspended particulate matter (SPM) in the Murray-Darling River system, Australia. Geochim. et Cosmo. Acta, 59: 3799-3815 https://doi.org/10.1016/0016-7037(95)00266-3
  10. Eisenhauer, A., H. Meyer, V. Rachold, T. Tutken, B. Wiegand, B.T. Hansen, R.F. Spielhagen, F. Lindemann and H. Kassens, 1999. Chem. Geol., 158: 173-188. https://doi.org/10.1016/S0009-2541(99)00026-1
  11. Folk, R.L. and W.C Ward, 1957. Brazor river bar: a study in the significance of grain size parameters, J. Sed. Petrol., 27: 3-27 https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  12. Galehouse, J.S. 1971. Sedimentation analysis. In: Procedures in Sedimentary Petrology edited by Carver, R. E., Wiley-Interscience, 69-94p
  13. Ingram, R.L., 1971. Sieve analysis. In; Procedure in Sedimentary Petrology: edited by Carrer, R. E., Wiley Interscience, 49-68p
  14. Kim, G.B. H.S. Yang and T.M. Church, 1999. Geochemistry of alkaline earth elements (Mg, Ca, Sr, Ba) in the surface sediments of the Yellow Sea. Ghem. Geol., 153: 1-10
  15. Kitano, Y. and R. Hujiyoshi, 1980. Selective chemical leaching of cadmium, copper, and manganese and iron in marine sediments. Geochem. J., 14: 113-122 https://doi.org/10.2343/geochemj.14.113
  16. Lee, H.J. and S.K. Chough, 1989. Sediment distribution, dispersal and budget in the Yellow Sea. Mar. Geol., 87: 195-205 https://doi.org/10.1016/0025-3227(89)90061-3
  17. Li, B., B.K. Park, and D. Kim, 1999, Paleoceanographic records from the Northern shelf of the East China Sea since the Last Glacial Maximum. J. Korean. Soc. Oceanogr., 34: 151-166
  18. Lie, H.J., 1986. Summertime hydrographic features in the southeastern Huanghe. Prog. Oceanogr., 28: 680-683
  19. Lie, H.J., 2003. Structure and eastward extension of the Changjiang River plume in the East China Sea. J. Geophys. Res., 108(C3): 22-1-22-14
  20. Lim, D.I., 2003. Geochemical compositions of coastal sediments around Jeju Island, South Sea of Korea: potential provenance of sediment. J. Korean Ear. Sci. Soc., 24: 337-345
  21. Lim, D.I., H.S. Jung and J.Y. Choi, 2004, Geochemical difference between Chinese and Korean river sediments and new approach on the sediment provenance in the Yellow Sea. Proceedings of the Spring Meeting, 2004 of the Korean Society of Oceanography, 382-383
  22. Lin, S., I-J. Hsieh, K-M. Huang and C-H. Wang, 2002. Influence of the Yangtz River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments. Ghem. Geol., 182: 377-394
  23. Liu, J., R. Zhu and G. Li, 2003. Rock magnetic properties of the finegrained sediment on the outer shelf of the East China Sea: implication for provenance. Mar. Geol., 193: 195-206 https://doi.org/10.1016/S0025-3227(02)00660-6
  24. Liu, Z.X., S. Beme, Y. Saito, G. Lericolasis and T. Marsset, 2000. Quaternary seismic stratigraphy and paleoenvironments on the continental shelf of the East China Sea. J. Asian Ear. Sci., 18: 441-452 https://doi.org/10.1016/S1367-9120(99)00077-2
  25. Martin, J.M., J. Zhang, M.C. Shi and Q. Zhou, 1983. Actual flux of the Huanghe (Yellow River) sediment to the western Pacific Ocean. Neth. J. Sea Res., 31: 243-254
  26. Milliman, J.D., R.C. Beardsley, Z.S. Yang and R. Limebumer, 1985a. Modern Huanghe-derived muds on the outer shelf of the East China Sea: identification and potential transport mechanisms. Cont. Shelf Res., 4: 175-188 https://doi.org/10.1016/0278-4343(85)90028-7
  27. Milliman, J.D., H.T. Shen, Z.S. Yang and R.H. Meade, 1985b. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf. Cont. Shelf Res., 4: 37-45 https://doi.org/10.1016/0278-4343(85)90020-2
  28. Milliman, J.D., Y.S. Qin, M.E. Ren and Y. Saito, 1987. Man's influence on the erosion and transport of sediment by Asian rivers: the Yellow River (Huanghe) example. J. Geol., 95: 751-762 https://doi.org/10.1086/629175
  29. Niino, H. and K.O. Emery, 1961. Sediments of shallow portion of East China Sea and South China Sea. Geol. Soc. Am. Bull., 72: 731-762 https://doi.org/10.1130/0016-7606(1961)72[731:SOSPOE]2.0.CO;2
  30. Nittrouer, C.A., D.J. DeMaster and B.A. McKee, 1984. Fine-scale stratigraphy in proximal and distal deposits of sediment dispersal systems in the East China Sea. Mar. Geol., 61: 13-24 https://doi.org/10.1016/0025-3227(84)90105-1
  31. Park, Y.A. and B.K. Khim, 1990. Clay minerals of the recent fine grined sediments on the Korean continental shelves. Cont. Shelf Res., 10: 1179-1191 https://doi.org/10.1016/0278-4343(90)90015-E
  32. Qin, Y., Y. Zhao, L. Chen and S. Zhao, 1996. Geology of the East China Sea, A Series of Solid Earth Science Research in China. Science Press, Beijing, 357p
  33. Saito, Y., 1998. Sedimentary environment and budget in the East China Sea. Bull. Coas. Oceanogr. Japan, 36: 43-58
  34. Shi, S., Z. Chen, Z. Cheng, D. Cai, W. Bu, K. Wang, J. Wei and H.I. Yi, 2004. Transportation and deposition of modern sediments in the southern Yellow Sea. J. Korean Soc. Oceanogr., 39: 57-71
  35. Tutken, T., A. Eisenhauer, B. Wiegand and B.T. Hansen, 2002, Glacial-interglacial cycles in Sr and Nd isotope composition of Arctic marine sediments triggered by the Svalbard/Barents Sea ice sheet. Mar. Geol.. 182: 351-372 https://doi.org/10.1016/S0025-3227(01)00248-1
  36. Yang, S.Y., H.S. Jung, D.I. Lim and C.X. Li, 2003. A review on the provenance discrimination of sediments in the Yellow Sea. Earth-Sci. Rev., 1289: 1-28
  37. Yoo, D.G., C.W. Lee, S.P. Kim, J.H. Jin, J.K. Kim and H.C. Han, 2002. Late Quaternary transgressive and highstand systems tracks in the northern East China Sea mid-shelf. Mar. Geol., 187: 313-328 https://doi.org/10.1016/S0025-3227(02)00384-5
  38. Zhu, E. and Q. Wang, 1988. Sedimentation on the north shelf of the East China Sea. Mar. Geol., 81: 123-136 https://doi.org/10.1016/0025-3227(88)90021-7