DOI QR코드

DOI QR Code

Optimal Design of Friction Dampers based on the Story Shear Force Distribution of a Building Structure

건축구조물의 층전단력 분포에 기초한 마찰감쇠기의 최적설계

  • 이상현 (단국대학교 건축대학 건축공학과) ;
  • 민경원 (단국대학교 건축대학 건축공학과) ;
  • 박지훈 (단국대학교 건축대학 건축공학과) ;
  • 이루지 (단국대학교 건축대학 건축공학과)
  • Published : 2005.12.31

Abstract

In this study, a seismic design methodology for friction dampers based on the story shear force distribution of an elastic building structure is proposed. First, using two normalization methods for the slip-load of a friction damper, numerical analyses of various single-degree-of-freedom systems are peformed. From those analyses, the effect of the slip-load and the brace stiffness was investigated and the optimal silliness ratio of the brace versus original structure was found. Second, from the numerical analysis for five multi-story building structures with different natural frequency and the number of story, reasonable decision method for the total number of installation floor, location of installation and distribution of the slip-loads are drawn. In addition, an empirical equation on the optimal number of installation floor is proposed. Finally, the superiority of the proposed method compared to the existing design method is verified from the numerical analysis using real earthquake data.

본 연구에서는 지진하중을 받는 탄성구조물을 대상으로 층전단력 분포에 기초한 마찰감쇠기의 설계방법을 제시하였다. 먼저 마찰감쇠기의 슬립하중(slip-load)을 정규화하는 방법 별로 단자유도 시스템의 수치해석을 수행하고 비교하였다. 이를 통해 슬립하중과 가새 강성의 영향을 파악하였으며, 설치용 가새와 원구조물의 최적강성비를 찾았다. 다음으로는 다양한 고유주기와 층수를 갖는 구조물을 대상으로 수치해석을 통해 마찰감쇠기의 설치 층수와 위치의 결정방법 및 슬립하중의 분배 방법을 도출하였다. 이 과정에서 설치 층수가 포함된 성능지수를 사용하여 슬립하중의 총합으로부터 최적의 설치 층수를 도출하는 경험식을 제시하였다. 마지막으로 실제 지진하중을 사용한 수치해석을 통해 기존의 최적설계 방법과 비교하여 제안된 방법의 우수성을 입증하였다.

Keywords

References

  1. Pall, A.S. and Marsh, C., 'Response of friction damped braced frames,' Journal of Structural Engineering, Vol.108, No.9, 1982, pp.1313-1323
  2. Constantinou, M.C., Mokha, A. and Reinhorn A. M., 'Teflon bearings in base isolation. II: Modeling,' Journal of Structural Engineering, Vol.116, No.2, 1990, pp.455-474 https://doi.org/10.1061/(ASCE)0733-9445(1990)116:2(455)
  3. Li, C. and Reinhorn, A.M., 'Experimental and Analytical Investigation of Seismic Retrofit of Structures with Supplemental Damping: Part II - Friction Devices,' Technical Report NCEER-95-0009, State University of New York at Buffalo, Buffalo, NY, 1995
  4. Grigorian, C.E., Yang, T.S. and Popov E.P., 'Slotted bolted connection energy dissipators,' Report of National Science Foundation, University of California, Berkeley, 1992
  5. Mualla, I., Nielsen, L.O., Chouw, N., Belev, B., Liao, W.I., Loh, C.H. and Agrawal, A., 'Enhanced response through supplementary friction damper devices,' Balkema, Wave propagation, moving load and vibration reduction; Proceedings of the international workshop WAVE 2002, pp.121-128
  6. Cho, C.G. and Kwon, M., 'Development and modeling of a frictional wall damper and its applications in reinforced concrete frame structures,' Earthquake Engineering Structures Dynamics, Vol. 33, 2004, No.821-838 https://doi.org/10.1002/eqe.379
  7. Dyke, S.J., Spencer Jr., B.F., Sain, M.K. and Carlson, J.D., 'Modeling and control of magnetorheological dampers for seismic response reduction,' Smart Materials and Structures, Vol.5, 1996, pp.565-575 https://doi.org/10.1088/0964-1726/5/5/006
  8. Filiatrault, A. and Cherry, S., 'Seismic design spectra for friction-damped structures,' Journal of Structural Engineering, Vol.116, 1990, pp.1334-1355 https://doi.org/10.1061/(ASCE)0733-9445(1990)116:5(1334)
  9. Cherry, S. and Filiatrault, A., 'Seismic response control of buildings using friction dampers,' Earthquake Spectra, Vol.9, 1993, pp.447-466 https://doi.org/10.1193/1.1585724
  10. Kim, J. and Choi, H., 'Response modification factors of chevron-braced frames,' Engineering Structures, Vol.27, No.2, 2005, pp.285-300 https://doi.org/10.1016/j.engstruct.2004.10.009
  11. Moreschi, L.M. and Singh, M.P., 'Design of yielding metallic and friction dampers for optimal seismic performance,' Earthquake Engineering Structures Dynamics, Vol.32, 2003, pp.1291-1311 https://doi.org/10.1002/eqe.275
  12. Garcia, D.L. and Soong, T.T., 'Efficiency of a simple approach to damper allocation in MDOF structures,' Journal of Structures Control, Vol.9, No.1, 2002, pp.19-30 https://doi.org/10.1002/stc.3
  13. Shukla, A.K. and Datta, T.K., 'Optimal use of viscoelastic dampers in building frames for seismic force,' Journal of Structural Engineering, Vol. 125, No.4, 1999, pp.401-409 https://doi.org/10.1061/(ASCE)0733-9445(1999)125:4(401)
  14. Uniform Building Code, International Conference of Building Officials, Whittier, California, 1997
  15. Chopra, A.K., Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice-Hall: Upper Saddle River, NJ, USA, 1995
  16. Soong, T.T. and Chen, W.F., Active Structural Control: Theory and Practice, Longman Scientific & Technical, 1990

Cited by

  1. Seismic Performance Test of a Steel Frame with Multi-action Hybrid Dampers vol.23, pp.1, 2019, https://doi.org/10.5000/EESK.2019.23.1.001